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Abstract
The mathematical and physical foundations and domain of applicability of 
Sandia’s GeoModel are presented along with descriptions of the source code 
and user instructions. The model is designed to be used in conventional finite 
element architectures, and (to date) it has been installed in five host codes 
without requiring customizing the model subroutines for any of these different 
installations. Although developed for application to geological materials, the 
GeoModel actually applies to a much broader class of materials, including 
rock-like engineered materials (such as concretes and ceramics) and even to 
metals when simplified parameters are used. Nonlinear elasticity is supported 
through an empirically fitted function that has been found to be well-suited to a 
wide variety of materials. Fundamentally, the GeoModel is a generalized plas-
ticity model. As such, it includes a yield surface, but the term “yield” is gener-
alized to include any form of inelastic material response including microcrack 
growth and pore collapse. The geomodel supports deformation-induced anisot-
ropy in a limited capacity through kinematic hardening (in which the initially 
isotropic yield surface is permitted to translate in deviatoric stress space to 
model Bauschinger effects). Aside from kinematic hardening, however, the 
governing equations are otherwise isotropic. The GeoModel is a genuine unifi-
cation and generalization of simpler models. The GeoModel can employ up to 
40 material input and control parameters in the rare case when all features are 
used. Simpler idealizations (such as linear elasticity, or Von Mises yield, or 
Mohr-Coulomb failure) can be replicated by simply using fewer parameters. 
For high-strain-rate applications, the GeoModel supports rate dependence 
through an overstress model.
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THE SANDIA GEOMODEL
Theory and User’s Guide

1. Introduction

Simulating deformation and failure of natural geological materials (such as limestone, 
granite, and frozen soil) as well as rock-like engineered materials (such as concrete [46] 
and ceramics [2]) is at the core of a broad range of applications, including exploration and 
production activities for the petroleum industry, structural integrity assessment for civil 
engineering problems, and penetration resistance and debris field predictions for the 
defense community. For these materials, the common feature is the presence of microscale 
flaws such as porosity (which permits inelasticity even in purely hydrostatic loading) and 
networks of microcracks (leading to low strength in the absence of confining pressure, 
non-negligible nonlinear elasticity, rate-sensitivity, and differences in material behavior 
under triaxial extension compared to triaxial compression). 

For computational tractability, and to allow relatively straightforward model parame-
terization using standard laboratory tests, the Sandia GeoModel [15] strikes a balance 
between first-principals micromechanics and phenomenological, homogenized, and semi-
empirical modeling strategies. The over-arching goal is to provide a unified general-pur-
pose constitutive model that can be used for any geological or rock-like material, that is 
predictive over a wide range of porosities and strain rates. Being a unified theory, the Geo-
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gure 1.0. GeoModel continuous yield surface.   (a) three-dimensional view in principal stress space with
gh pressure “cap” shown as a wire frame, (b) the meridional “side” view (thick line) with the cap shown on
ore compressive right-hand side of the plot using cylindrical coordinates in which  points along the compres
11] direction, and (c) the octahedral view, which corresponds to looking down the hydrostat (onto planes perpen
ar to the [111] direction). 
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Introduction
Model can simultaneously model multiple failure mechanisms, or (by using only a small 
subset of the available parameters) it can duplicate simpler idealized yield models such as 
classic Von Mises plasticity and Mohr-Coulomb failure. Thus, exercising this model can 
require as many as 40 parameters for extremely complicated materials to only 2 or 3 
parameters for idealized simplistic materials. The model parameters are defined in the 
nomenclature table (Appendix B). Appendix A gives step-by-step instructions for using 
experimental data to assign values to the GeoModel parameters.

GeoModel overview
The GeoModel shares some features with earlier work by Schwer and Murry [42] in 

that a Pelessone function [34] permits dilatation and compaction strains to occur simulta-
neously. For stress paths that result in brittle deformation, failure is associated ultimately 
with the attainment of a peak stress and work-softening deformation. Tensile or extensile 
microcrack growth dominates the micromechanical processes that result in macroscopi-
cally dilatant (volume increasing) strains even when all principal stresses are compressive. 
At low pressure, porous brittle materials can fail by shear localization and exhibit strain-
softening behavior. At higher pressures, they can undergo strain-hardening deformation 
associated with macroscopically compactive volumetric strain (i.e. void collapse). Fea-
tures and limitations of the GeoModel are summarized below. 

Features of the GeoModel 
Depending on how the model parameters are set, the GeoModel is capable of any of 

the following model features

• Linear and nonlinear, associative or non-associative Drucker-Prager plasticity.
• Linear and nonlinear, associative or non-associative Mohr-Coulomb plasticity.
• Linear or nonlinear, associative or non-associative Willam-Warnke plasticity.
• Von Mises perfect plasticity.
• Tresca perfect plasticity.
• Sandler-Rubin two-surface cap plasticity (approximated).
• Three-invariant, mixed hardening, continuous surface cap plasticity.
• Linear or nonlinear shear failure with or without kinematic hardening.
• Nonlinear compaction function (pressure-volume) with isotropic hardening.
• Three Lode-Angle functions (i.e., non-circular or circular octahedral yield profile).
• Linear or non-linear elasticity.
• Rate-independent or strain-rate-sensitive yield surface.
• Flexibility that permits reducing the model (and the number of required parameters). 

to other more classical failure models.
• Pressure and shear dependent compaction (similar to p-α models hydrostatic loading, 

but generalized to include shear effects in general loading).
• Ubiquitous jointing (i.e., support for a network of many randomly oriented faults).
2



Introduction
Limitations of the GeoModel. 
• The GeoModel version that is described in this report treats the material as initially 

isotropic. Kinematic hardening is the only mechanism for deformation-induced 
anisotropy. Enhanced versions of the GeoModel that support arbitrary anisotropic 
jointing are available but not documented here.

• The elasticity model is hypoelastic rather than hyperelastic.
• While the hydrostatic crush curve is quite general, only an elliptic cap function is 

available for modeling shear effects on pore collapse and other mechanisms of plastic 
volume reduction. Alternative cap models (such as the Gurson function) can be 
incorporated in future revisions if needed.

• The host code is responsible for satisfying frame indifference (by calling the 
GeoModel using conjugate reference stress and strain rate measures).

• The GeoModel describes material response up to the onset of softening. The host 
code is responsible for handling material post-peak softening and the accompanying 
change in type of the governing equations to ensure mesh-size independence.

• The GeoModel is not extensively parameterized (or even tested) for tensile loading, 
though it is thoroughly validated in compression.

• Compared with simple idealized models (which are well known to give unsatisfactory 
results in non-trivial structural applications), the GeoModel is computationally 
intensive, though less so than many other models of comparable complexity.

• The GeoModel is limited to relatively small distortional (shape changing) strains, 
though large volume changes are permitted. Arbitrarily large rotations are permitted 
if the host code manages the reference stress and strain measures properly (see 
page 76).

• The triaxial extension/compression strength ratio is presumed constant. It does not 
vary with pressure, nor does it evolve in time. 

The GeoModel predicts observed material response, without explicitly addressing how
the material behaves as it does. The GeoModel reflects subscale inelastic phenomena en 
ensemble by phenomenologically matching observed data to interpolation functions. Con-
siderations guiding the structure of the GeoModel’s material response functions are (1) 
consistency with microscale theory, (2) computational tractability, (3) suitability to cap-
ture trends in characterization data, and (4) physics-based judgements about how a mate-
rial should behave in application domains where controlled experimental data cannot be 
obtained.

Fundamentally, the GeoModel is a generalized and unified plasticity model. Here, the 
term “plasticity” is defined very broadly to include any mechanism of inelastic deforma-
tion. Primarily, the source of inelastic deformation in geological materials (or in rock-like 
materials such as concrete and ceramics) is growth and coalescence of microcracks and 
pores. Under massive confining pressures, inelasticity could include plasticity in its tradi-
tional dislocation sense or, more generally, might result from other microphysical mecha-
nisms (internal locking, phase transformation, twinning, etc.). 
3



Introduction
The GeoModel is phenomenological and semi-empirical because the physical mecha-
nisms of inelastic material behavior are handled in an ensemble manner, without explicitly 
partitioning and modeling each possible contributor to the inelasticity. The GeoModel 
makes no explicit reference to microscale properties such as porosity, grain size, or crack 
density. Instead, the overall combined effects of the microstructure are modeled by casting 
the macroscale theory in terms of macroscale variables that are realistic to measure in the 
laboratory. For example, inelastic compaction followed by shear-enhanced dilatation has 
long been attributed to an initial phase of void collapse followed later by microcracks 
opening in shear. The GeoModel is exceptionally capable of matching this type of 
observed compaction/dilatation data, but it does so without demanding that the user sup-
ply information about essentially unknowable porosity or microcrack distributions within 
the material. 

Being a generalized plasticity model, the GeoModel presumes that there exists a con-
vex contiguous “elastic domain” of stress states for which the material response can be 
construed to be elastic. The boundary of the elastic domain is called the yield surface. 
When loading is severe enough that continuing to apply elasticity theory would produce a 
stress state lying outside the yield surface, the material response will instead be inelastic 
and a different set of equations must then be solved. Aside from supporting kinematic 
hardening, the GeoModel is isotropic, which means that the criterion for the onset of plas-
ticity depends only on the three principal values of the stress tensor, , but not 
on the principal directions. Consequently, as illustrated in Fig. 1.0 (page 1), the yield sur-
face may be visualized as a 2D surface embedded in a 3D space where the axes are the 
principal stresses. The elastic domain is the interior of this surface. The hydrostat is the 
[111] direction, along which all three principal stresses are equal. Any plane that contains 
the hydrostat is called a meridional plane. Any “side view” cross-section of the yield 
surface on a meridional plane is called a meridional profile. Any plane perpendicular to 
the hydrostat is called an octahedral plane, and any cross-section of the yield surface 
on an octahedral plane is called an octahedral profile. 

Mathematically, the yield surface may be expressed in terms of a yield function
. When hardening is permitted, the yield function additionally depends on 

internal state variables that quantify the underlying microstructure (e.g. porosity). 
Points on the yield surface satisfy  and therefore, because the equation 

 is phrased in terms of three independent variables, the yield surface 
may be visualized in the 3D Cartesian space, called stress space*. When the yield func-
tion additionally depends on internal state variables, different values for the internal state 
variables result in different yield surfaces in stress space. Points within the elastic domain 
satisfy . Brittle materials are very weak in tension, but they can deform elastically 
under a much broader range of stress states in compression. Consequently, the elastic 
domain (and therefore its boundary, the yield surface) resides primarily in the compressive 

* Some people prefer that this be called Haigh-Westergaard space [31] so that the phrase “stress-
space” may be reserved for the higher-dimensional space defined by the set of all tensors that com-
mute with the stress tensor.

σ1 σ2 σ3, ,( )

f σ1 σ2 σ3, ,( )

f 0=
f σ1 σ2 σ3, ,( ) 0=

f 0<
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Introduction
part of stress space where all three principal stresses are negative. Thus, the typical rock 
yield surface shown in Fig. 1.0(a) is actually being viewed from the compressive [111] 
direction. The “cap” part of that yield surface (shown as a wire frame in Fig. 1.0) reflects 
the fact that, unlike solid metals, inelasticity can occur in rocks even under purely hydro-
static compression as a consequence of void collapse.

A yield surface is the boundary of elastically obtainable stress states, whereas a 
limit surface is the boundary of stresses that are quasi-statically obtainable by any quasi-
static means, elastic or plastic. Points outside the limit surface can be reached only tran-
siently in dynamic loading via viscoplastic rate dependence. Points outside a yield surface 
might be attainable through a hardening process, but points outside the limit surface are 
not attainable via any quasistatic process. Points on the limit surface define the onset of 
material softening. Consequently, a state on the limit surface is attainable at least once, but 
might not be attainable thereafter. The GeoModel simulates material response only up to 
the limit state. The GeoModel does not simulate subsequent softening, if any, because 
softening usually induces a change in type of the partial differential equations for momen-
tum balance, which therefore requires a response from the host code to alter its solution 
algorithm (perhaps by inserting void or by activating special elements that accommodate 
displacement discontinuities). 

Since the GeoModel does not include post-softening stress response, the limit surface 
may be regarded as fixed — it does not evolve (i.e., move around in stress space) as a 
yield surface can. Since the limit surface contains all attainable stress states, it follows that 
the set of all possible yield surfaces is contained within the limit surface (see Fig. 1.1). 
Plasticity induces microstructural changes that permit the yield surface to evolve through 

initial yield surface
isotropically hardened
yield surface

kinematically hardened
yield surface

both isotropically 

hardened yield surface

limit surface

Figure 1.1. Distinction between a yield surface and the limit surface.   This sketch shows meridional 
profiles of an initial yield surface along with hardened yield surfaces that might evolve from the initial sur-
face. All achievable stress states (and therefore all possible yield surfaces) are contained within the limit 
surface. Fig. 1.0(b), for example, depicts a family of yield surfaces, all bounded by the limit surface.

r

z

and kinematically
5



Introduction
time, effectively changing the initial material into a mechanically different material. A 
material can have an infinite number of yield surfaces generated via various path-depen-
dent hardening processes, but it can have only one limit surface. Limit surface character-
ization is accomplished by performing numerous experiments all the way to the point of 
material rupture (catastrophic failure). Each such experiment can have only one peak 
stress state. Post-peak softening in a material might lead to a stress at rupture that is 
smaller than at the peak, but it is the collection of peak — not rupture — stress states that 
defines the limit surface. Of course, mapping out the limit surface for a given material 
requires using a new sample for every experiment, which itself introduces uncertainty 
regarding variability in material composition and microstructure. Presently, the GeoModel 
treats the limit surface (and each yield surface) as a sharp threshold boundary. Work is 
underway to allow these boundaries in stress space to be “fuzzy” to better account for nat-
ural material variability.

The set of all possible yield surfaces is contained within the limit surface. Porous 
materials are capable of inelastic deformation even under purely hydrostatic loading. Con-
sequently, porous materials tend to have closed convex yield surfaces. Once all pores are 
crushed out, however, a material can withstand an unlimited amount of pressure. Thus, as 
indicated in Fig. 1.1, the limit surface for any material will always be an open convex set.

Despite being developed primarily for geological applications, the GeoModel is truly a 
unification of many classical plasticity models. For example, by using only a small subset 
of available parameters, the GeoModel can be instructed to behave precisely like a classi-
cal hardening or non-hardening Von Mises model, in which case the yield surface 
becomes a cylinder centered about the [111] direction. Other classical models such as 
Drucker-Prager plasticity, Tresca theory, maximum principal stress theory, and Mohr-Cou-
lomb theory are also supported in the GeoModel by using the simplified input sets sum-
marized in Appendix B. Replicating analytical results from simplified theories is an 
important aspect of verification of the GeoModel. However, full use of nearly all Geo-
Model features is often required to adequately validate the model for realistic rock-like 
materials.

To describe in greater detail how the GeoModel supports its broad range of micro-
mechanisms of failure in a mathematical and computational framework, Chapters 2 and 3
first summarize our notation and outline some important concepts and conventions about 
the nature of stress. Chapter 4 describes the GeoModel theory (elasticity, yield surface def-
inition and evolution, etc.). The computational algorithm, subroutines, and plotable output 
will be discussed in Chapter 6, followed by software quality assurance in Chapter 7. Chap-
ters 8 and 9 summarize verification and validation tests that have been completed to date 
for a variety of materials. Model parameters (as well as descriptions of internal state vari-
ables and other symbols used in this report) are defined in Appendix B, along with sample 
input sets for realistic and idealized materials. Instructions for determining appropriate 
model parameters from laboratory data are provided in Appendix A. 
6



Notation
2. Notation

Typesetting conventions
Throughout this report, blue variables are user input parameters and green vari-

ables are internal state variables available for plotting in the numerical implementation. 
At the discretion of the host code in which the GeoModel is run, several other field vari-
ables (e.g., stress) may be additionally available for plotting. 

Vector and tensor equations will be presented using indicial Cartesian notation in 
which repeated indices within a term are understood to be summed from 1 to 3 while non-
repeated indices are free and take values 1 through 3. Upon occasion, vectors and tensors 
will be written in symbolic or “direct” notation in which the number of “tildes” beneath a 
symbol equals the tensorial order of that variable. For example, , , and  would denote 
a scalar, a vector, and a tensor, respectively. 

Vector and Tensor notation
For this report, the following standard operations and definitions from vector and ten-

sor analysis will be employed:

Dot product between two vectors: .  (2.1)

Dot product between a tensor and a vector:  means .  (2.2)

Dot product between a tensor and a tensor:  means .  (2.3)

Kronecker delta: .  (2.4)

Identity tensor:  is the tensor whose  components are  and whose  
component matrix is therefore the  identity matrix.  (2.5)

Inner product between two tensors: .  (2.6)

Magnitude of a vector: .  (2.7)

Magnitude of a tensor: .  (2.8)
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Notation
Trace of a tensor : .  (2.9)

Deviatoric part of a tensor: , or .  (2.10)

First invariant (trace) of a tensor : .  (2.11)

Second invariant of a tensor : .  (2.12)

Third invariant of a tensor : .  (2.13)

Throughout this report, invariants of the stress tensor  will be written without the super-
script identifier. For example,  means the same thing as . The GeoModel supports 
kinematic hardening in which the shifted stress tensor  is defined , 
where  is the backstress tensor (defined later). The invariants  in the non-hard-
ening theory will become  when kinematic hardening is used.

In materials modeling, tensors are often regarded as higher-dimensional vectors. The 
inner product between two tensors,  and , is isomorphic to (i.e., geometrically analo-
gous to) the dot product between two vectors. This permits the “magnitude” of a tensor, 
the “direction” of a tensor, and the “angle” between two tensors to be defined in manners 
analogous to ordinary vector definitions. The direction of a tensor plays a role in the Geo-
Model by defining the outward normal to the yield surface (which is actually a hyper-sur-
face in higher-dimensional tensor space). Likewise, the angle between two tensors is used 
to quantify the concept of non-normality, discussed later.

The derivatives of a scalar-valued function  that depends on a second-order tensor  
as well as depending on a scalar  are given by

 is a second-order tensor with ij components .  (2.14)

 is a scalar.  (2.15)

Other derivatives are defined similarly. For example, the derivative of a second-order ten-
sor  with respect to a another second-order tensor  is a fourth-order tensor with ijkl
components . Fourth-order tensors do not play a significant role in the Geo-
Model theory. The only truly important fourth-order tensor is the plastic tangent stiffness 
tensor, formally equal to the derivative of the stress rate with respect to the strain rate.
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The Stress Tensor
3. The Stress Tensor

This section defines the stress tensor, its principal values, its invariants, and its sign 
convention. This chapter describes four canonical stress paths used to parameterize the 
GeoModel: hydrostatic (HYD), triaxial compression (TXC), triaxial extension (TXE), and 
shear (SHR). For transient dynamics, the GeoModel additionally requires Hugoniot and/or 
Kolsky (split Hopkinson) bar data to parameterize the viscoplasticity*. This chapter 
defines the distinction between the spatial Cauchy stress and the unrotated “reference” 
stress. In preparation for a detailed discussion of the GeoModel theory, this chapter closes 
with a detailed description of “stress space” and Lode coordinates.

The stress tensor , is defined such that the traction vector  (i.e., force per unit 
area), acting on any given plane with unit normal , is given by 

.  (3.1)

Of course, the traction and normal vectors may be described in terms of their Cartesian 
components,  and  with respect to an orthonormal basis. The stress 
tensor has a  Cartesian component matrix such that the above equation may be writ-
ten in matrix form as

,  (3.2)

or in indicial form as

,  (3.3)

where (recalling the implied summation convention) the repeated index “j” is understood 
to be summed from 1 to 3 and the non-repeated “free” index “i” appearing in each term 
takes values from 1 to 3 so that the above equation is actually a compact representation of 
three separate equations (one for each value of the free index).

The stress is symmetric, which means that . In continuum mechanics, and in 
this report, stress is taken positive in tension. This sign convention can be the source of 
considerable confusion, especially when discussing stress invariants. For example, the 
trace of the stress, , is positive in tension. However, brittle materials have very low 
strength in tension. Consequently, most of the functions defined in this report are nontriv-
ial over only a small range of the tensile states where  is positive. On the other hand, 

* Until rate dependence is discussed separately in Chapter 5, all incremental or rate equations in this 
report are understood to apply only under quasistatic loading and may therefore be regarded as 
“inviscid” equations. Incorporating viscoplastic rate dependence requires, as a pre-requisite, solu-
tion of these quasistatic inviscid equations.
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The Stress Tensor
most of the GeoModel functions are non-trivial over a relatively large range of compres-
sive states where  is negative. To help manage the sign convention problem, we will 
introduce a new notation that an over-bar on a variable denotes the negative. Specifically, 
for any variable x, 

          DEFINITION OF THE “OVER-BAR.”  (3.4)

In our plots of any variable that varies as a function of , we will usually employ an 
abscissa of , which (being the negative of ) is positive in compression. Any variable 
typeset with an overbar will be positive more often than negative in most applications.

The principal stresses are the eigenvalues  of the stress matrix, posi-
tive in tension. Their negatives  are positive in compression.*  When cast in 
terms of the principal basis (i.e., the orthonormal eigenvectors of the stress matrix), the 
diagonal components of the stress matrix will equal the principal stresses, and the off-
diagonals will be zero. 

The stress deviator  is the deviatoric part of the stress (see Eq. 2.10):

.  (3.5)

Loosely speaking, the stress deviator is a tensor measure of shear stress. An overall scalar 
measure of shear will be defined later. The quantity  is called the mean stress, 
and we will denote it by . The negative of the mean stress, , is called the pres-
sure, and is positive in compression. Noting that the mean stress (or pressure) is simply a 
multiple of , its value is an invariant, meaning that the sum of diagonal stress compo-
nents will have the same value regardless of the orthonormal coordinate system used to 
describe the stress components. The principal directions of the stress deviator are the same 
as those for the stress itself, and the principal values for the stress deviator are related to 
the principal stresses by

 (3.6)

 (3.7)

.  (3.8)

The trace of  is zero, which implies that the numerically largest principal value of 
any nonzero stress deviator will always be positive and the smallest will always be nega-
tive. In model parameterization tests, a sufficiently high confining pressure  is typically 
superimposed on the stress deviator to make all principal stress components compressive 
even though the principal deviatoric stresses always have mixed signs.

* Of course, if principal stresses are ordered such that , then the barred principal stresses 
will be ordered .
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The Stress Tensor
Stress invariants
The trace operator is an invariant, which means its value will be the same regardless of 

which orthonormal basis is used for the stress components. Being symmetric, the stress 
tensor has a total of three independent invariants:

=  (3.9)

=  (3.10)

= .  (3.11)

The fact that these invariants are computed from the stress tensor  is sometimes empha-
sized by typesetting them as , , and . Similarly defined invariants for some other
tensor  would be typeset as . Invariants for a tensor  would be written 

, and so forth. Any invariant written without a clarifying superscript should 
be understood to be a stress invariant.

The mean stress  is defined to be the average of the principal stresses, whereas pres-
sure  is just the negative of mean stress:

mean stress: pressure: , where .  (3.12)

Superimposing an extra pressure  on any stress state causes the pressure to increase 
from  to , while having no effect on the stress deviator and therefore no effect on 
the second and third invariants. Because the stress deviator  has a zero trace, it can be 
shown that  also equals the determinant of the stress deviator so that , and 
the second invariant can be written alternatively as . 

Equation (3.10) shows that the invariant  is never negative, which permits us to 
define a supplemental stress invariant, the signed equivalent shear stress  as

.  (3.13)

The “transfer of sign” operator* is defined

.  (3.14)

As defined, the equivalent shear stress will have a numerical sign that is positive in triaxial 
extension states (defined below), negative in triaxial compression, and it will be identi-
cally equal to the applied shear stress if the stress tensor happens to be in a state of pure 
shear (also defined below).

* which is an intrinsic function in most computing languages
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The Stress Tensor
For clarity, the values of the invariants have been shown here in terms of the principal 
values of the stress and its deviator. However, because the trace operation gives the same 
result regardless of which basis is used, the invariants are computed in practice directly 
from fully-populated  component matrices, thereby avoiding the need for an expen-
sive eigenvalue analysis. 

Derivatives of the stress invariants
For isotropic material modeling, each scalar-value function of stress, , is pre-

sumed to depend only on the principal stress values, not on the principal stress directions. 
Equivalently, the function  is isotropic if and only if it may be expressed alternatively 
as a function of the three stress invariants . In situations where the derivative of 

 with respect to stress is required, the chain rule can be applied as follows:

.  (3.15)

In symbolic tensor notation, this expansion is written as

.  (3.16)

Because the three invariants are each proper functions of the stress tensor, their derivatives 
may be computed in advance:

= the identity tensor  (3.17)

= = the stress deviator  (3.18)

= = the “Hill” tensor  (3.19)

Thus, Eq. (3.16) may be written

.  (3.20)

Of particular interest is the trace of the above expression, . Since both  and  
are deviatoric, the result is

.  (3.21)

The factor of 3 appears simply because . This, by the way, is a good example of 
the fallibility of indicial notation. Specifically,
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The Stress Tensor
           .  (3.22)

Special stress states
This section defines the four main stress states that are used to parameterize the Geo-

Model. These are hydrostatic loading (HYD), triaxial compression (TXC), triaxial exten-
sion (TXE), and shear (SHR). The purpose of the GeoModel is to interpolate realistically 
between known material response at these canonical states to describe material behavior 
under general stress states.

HYDROSTATIC (HYD). Loading is “hydrostatic” when components of the stress 
tensor are of the form

for hydrostatic stress states.  (3.23)

In practice, the pressure  is usually compressive (and therefore positive). Hydrostatic 
testing is very important to parameterization of the GeoModel because it indirectly char-
acterizes the influence of material porosity. When hydrostatically loaded to a high pres-
sure and then unloaded, a non-porous material will trace through the same stress states on 
both the loading and unloading curves. A porous material, on the other hand, will unload 
along a different path. If possible, hydrostatic testing for the GeoModel should be con-
ducted to sufficiently high pressures to compress out all pores, as indicated in Fig. 3.1.*

* Assuming that the matrix material is plastically incompressible, the porosity is , 
 where  is the logarithmic (Hencky) residual strain after full void collapse. If the residual 
strain is small, a Taylor series expansion of this formula gives .
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Figure 3.1. Typical hydrostatic (pressure vs. volumetric strain) compression data.   Total pore col-
lapse is achieved when the unloading curve (here shown as nonlinearly elastic) is tangent to the loading 
curve. In this case, the residual volumetric strain approximately equals the initial porosity.
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The Stress Tensor
When a material is loaded under hydrostatic tension instead of compression, inelastic 
response is again possible, but the mechanism of failure is catastrophic growth and coales-
cence of microcracks, resulting in material softening and, ultimately, complete loss of load 
carrying ability. 

TRIAXIAL (TXC and TXE): Loading is “triaxial” whenever two principal stresses 
(denoted  and called the “lateral” stresses) are equal to each other, but distinct from the 
third “axial” principal stress (denoted ). Thus, with respect to the principal basis, 

for triaxial stress states,  (3.24)

and

for triaxial stress states.  (3.25)

Also,

for triaxial stress states  (3.26a)

for triaxial stress states  (3.26b)

for triaxial stress states.  (3.26c)

The signed equivalent shear stress for triaxial loading is

 (3.27)

The invariants defined here may be written alternatively in terms of compressive stress 
measures as

 (3.28)
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The Stress Tensor
The term “triaxial” is a bit of a misnomer because there are not really three indepen-
dent loads applied — the lateral stresses are equal. These experiments are normally per-
formed on cylindrical test specimens with the lateral load supplied by a pressure bath. For 
triaxial compression (TXC) the axial stress is more compressive than the lateral stress. 
For triaxial extension (TXE) the axial stress is not necessarily tensile — it is merely 
less compressive than the lateral stress. For TXC, the specimen changes shape such that its 
length-to-diameter ratio decreases. For TXE, the length-to-diameter ratio increases even 
though the length and diameter might individually both decrease. Uniaxial stress compres-
sion (also called unconfined compression) is a special form of TXC in which the 
axial stress is compressive and the lateral stress is zero. Uniaxial stress extension is a spe-
cial form of TXE in which the axial stress is tensile and the lateral stress is zero. Uniaxial 
strain compression, which is typical in flyer-plate impact experiments is a special case 
of TXC in which the axial stress is compressive, while the lateral strain is zero (making 
the lateral stress also compressive, but less compressive than the axial stress). Biaxial 
tension is a special case of TXC in which the lateral stress is tensile and the axial stress 
is zero. Biaxial compression is a special case of TXE in which the lateral stress is com-

Figure 3.2. Triaxial compression (TXC) and triaxial extension (TXE)   Two principal stresses (the 
lateral stress) are equal. For TXC, the axial stress is more compressive than the lateral stress. For TXE, 
the axial stress is less compressive than the lateral stress. In the labels, ; stress  is positive in 
tension while stress  is positive in compression.

σ σ–= σ
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σL σL

σA σL<
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The Stress Tensor
pressive and the axial stress is zero. According to Eq. (3.27), the signed shear stress satis-
fies  for TXC,    whereas  for TXE.    Consequently, Eq. (3.28) shows that 

 (and hence ) for TXC,   while  (and hence ) for TXE.   Of 
course,  for both TXC and TXE because it is the square of .

In typical triaxial experiments, the lateral stress is held fixed (via a pressure bath) 
while only the axial stress is varied. In this case, Eq. (3.28) implies that

   for triaxial stress loading with fixed lateral stress.  (3.30)

Being easily achieved in the laboratory, TXC and TXE data are essential to parameter-
ize the GeoModel. In a typical triaxial test, the material is first loaded hydrostatically in a 
pressure bath until all three principal stresses reach a compressive pressure . There-
after, the lateral stresses are held fixed at this value ( ) while the axial stress is 
then increased beyond . For some experiments, the axial stress might be increased 
only until the stress difference reaches a given value, after which all stresses are again 
increased by equal amounts. These are called constant stress difference (CSD)
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Figure 3.3. Triaxial and CSD load paths.   The material is first compressed hydrostatically to a pre-
selected bath pressure ; at this point, the value of the first stress invariant is  and 
therefore . When the triaxial leg begins, the lateral stress is held constant  
while the axial stress is varied. This causes both the first and second invariants to change such that the 
path in this stress plot is a straight line with slope . For simple triaxial loading, the stress differ-
ence is increased until material failure occurs. For CSD loading, the stress difference is increased to a 
pre-selected value, and then held fixed while all stress components are thereafter varied equally until 
failure occurs.
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The Stress Tensor
experiments. Typically, these experiments are run to the point of material failure. Periodic 
partial unloading during a test reveals yielding if the unloading stress-strain curve has a 
noticeably different slope than the loading curve (without unloading, it would be impossi-
ble to definitively distinguish plasticity from non-linear elasticity). 

As illustrated in Fig. 3.3, a series of TXC experiments at various bath pressures and/or 
stress differences results in a family of  stress-at-yield points that map out the TXC 
meridional profile of the GeoModel yield surface. Similar experiments under TXE map 
out the TXC meridional profile. Usually, the TXE failure envelope will be shaped simi-
larly to the TXC envelope, but lower in magnitude because, at a given value of , the 
value of  at failure is generally lower for TXE than for TXC. A plot of the failure 
envelope in  vs.  space is essentially equivalent to the meridional “side” view of the 
yield surface (Fig. 1.0b), except with the axes scaled differently. The TXE experiments are 
mapping out the cross-section of the yield surface along which pressure varies while stay-
ing on the “base” of the triangular octahedral profile in Fig. 1.0c (page 1), whereas TXC 
experiments reveal how the apex of the triangle varies with pressure. For metals, there is 
little difference between the stress intensity required to initiate failure in TXC compared to 
TXE. However, for brittle materials, the difference is quite noticeable and (according to 
idealized microphysical theories) can be attributed to internal frictional resistance to shear 
crack growth. Because friction increases with pressure, the material strengths in TXC and 
TXE tend to increase with pressure but in approximately the same proportions so that the 
ratio of TXC strength to TXE strength is approximately pressure independent. Conse-
quently, the TXE profiles shown in Fig. 3.3 are shaped identically to the TXC profiles 
except smaller in magnitude.

Another form of triaxial loading, commonly used for dynamic material testing, is 
uniaxial strain, in which the lateral strain  is held constant. If the lateral strain  is 
held constant while continuing to compress axially, the lateral compressive stress  will 
increase to prevent lateral motion. For uniaxial strain, , and therefore Hooke’s 
law* in rate form reduces to

Uniaxial strain: and ,  (3.31)

where  and  are, respectively, the tangent elastic bulk and shear moduli. 

For uniaxial strain, the rate of the signed equivalent shear stress and the rate of the first 
stress invariant are

Uniaxial strain: and ,  (3.32)

and therefore the path through stress space is a straight line with slope

* The general form of Hooke’s law, applicable to any form of triaxial loading, is given in Eq. (4.11). 
Eq. (3.31) is a special case of Eq. (4.11) in which , with Eq. (4.13) used to express Young’s 
modulus  and Poisson’s ratio  in terms of  and . 
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The Stress Tensor
  for triaxial stress with fixed lateral strain,  (3.33)

where  is Poisson’s ratio. Since Poisson’s ratio typically varies between 0 and ,* this 
result shows that the trajectory in the meridional profile will generally have a shallower 
slope under uniaxial strain loading than under uniaxial stress loading. This result should 
make some intuitive sense. Uniaxial strain experiments are conducted by applying 
increasing levels of compression in the axial direction while holding the lateral strain 
fixed. As the axial strain is compressed, the material “wants” to expand laterally, but is not 
permitted to — a lateral compressive force prevents this outward motion. This constrain-
ing lateral compression makes  larger than it would be when lateral expansion is 
unconstrained. The larger  results in a shallower slope in the stress trajectory.

SIMPLE/PURE SHEAR and PRESSURE-SHEAR LOADING (SHR). 

A material is in a state of simple shear with respect to a given coordinate system if 
the stress matrix in that system is of the form

  for simple shear,  (3.34)

where  is the shear stress. The eigenvalues of this matrix are . In general, any 
stress state that is deviatoric with one eigenvalue being zero is said to be a pure shear
[27, p. 16]. (Thus, simple shear is a special type of pure shear). For an isotropic material 
model like the GeoModel, yield depends only on the principal stresses, so there is no prac-
tical difference between simple and pure shear (except when the model is anisotropic 
because of kinematic hardening).

For conducting material characterization experiments, pure shear of the form

  for pure shear  (3.35)

is most convenient. For brittle materials, pure shear is difficult to attain because one of the 
eigenvalues is always tensile. Frequently, pure shear is superimposed with enough confin-
ing hydrostatic pressure to make all principal stresses negative (compressive). Specifi-
cally, superimposing the hydrostatic loading of Eq. (3.23) onto the shear stress of 
Eq. (3.35), gives a state of combined pressure-shear (SHR) loading:

* Strictly speaking, positive definiteness of the elastic stiffness tensor merely requires . 
Whereas negative Poisson’s ratio has been observed in man-made materials with re-entrant micro-
structures, it has not (to our knowledge) been reported for naturally occurring materials. Perfor-
mance of the GeoModel has not been verified for materials with negative Poisson’s ratio. 
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The Stress Tensor
for combined pressure-shear loading.  (3.36)

The invariants for combined pressure-shear loading are

for combined pressure-shear loading  (3.37a)

for combined pressure-shear loading  (3.37b)

for combined pressure-shear loading  (3.37c)

.  (3.38)

Spatial and Reference stress (frame indifference)
The spatial Cauchy stress tensor defined in Eq. (3.1) is the “familiar” stress tensor 

used in everyday engineering applications. Let us now denote that stress by . The 
elasticity component of solids models requires knowledge of both the initial and current
configurations. Moreover, the principle of material frame indifference demands that if a 
second problem were considered that had the same initial configuration, but a current con-
figuration that is identical to the current configuration of the first problem, except also rig-
idly rotated, then the predicted spatial stresses for the second problem should be identical 
to those of the first problem, except rigidly rotated by the same amount. This concept is 
quite different from a mere basis change because the initial configuration is identical for 
both problems.

Satisfying material frame indifference in a spatial context can be computationally 
expensive and error-prone because anisotropic internal state variables (such as directions 
of material fibers or orientation of the backstress) must be rotated into the spatial frame, 
and special “objective” rates must be integrated in constitutive models. A mathematically 
equivalent (and numerically more accurate and efficient) strategy instead applies the con-
stitutive model within an unrotated reference configuration. With this approach, rotation 
of internal variables is not required, and all rates that appear in the constitutive model are 
more easily integrated true rates instead of co-rotational rates.

If  is the proper orthogonal tensor (found from a polar decomposition of the defor-
mation) that characterizes the material rotation, then the unrotated stress is simply

 (3.39)

By working in the unrotated reference configuration, the GeoModel predicts the 
stresses for the non-rotating problem. Upon receiving the GeoModel’s update of the unro-
tated stress, the host code then rotates the predicted stress back into the spatial frame. 
Roughly speaking, this approach will give results identical to a spatial constitutive model 
that is cast in terms of polar objective rates. 
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The Stress Tensor
For problems involving massive material rotation (e.g., turbine blades, vortices, tum-
bling rock fragments, etc.), the “unrotation” strategy can give considerably more accurate 
answers because the host code may, optionally, use the rotation tensor  at the beginning 
of the time step when computing the starting value of , but then the host code 
may use  at the end of the step when recasting the updated value of  (output 
of the GeoModel) to the spatial frame. Hence, this approach supports so-called “strong 
objectivity” [38] in a very natural way.

Throughout the remainder of this report, the “stress”  must be understood to be the 
unrotated stress   Likewise all other vector or tensor variables (such as the strain 
rate) mentioned in this report are understood to be cast in the unrotated configuration 
(material frame). Any host code that uses the GeoModel must (1) perform these unrotation 
operations, (2) call the GeoModel, and then (3) re-rotate the result back to the spatial frame 
upon return. For more information, see page 76.

Lode coordinates
Any isotropic yield function may be expressed in terms of the principal stresses 

. Therefore, the yield surface may be visualized in a 3D space for which the 
Cartesian coordinates are these principal stresses. The value of the yield function 

 must be independent of the ordering of the eigenvalues. Therefore, as seen 
in Fig. 1.0 (page 1), the yield surface must have  rotational symmetry about the [111] 
(hydrostat) direction and reflective symmetry about the TXE and TXC axes in the octahe-
dral plane (i.e., the view looking down the [111] axis). 

The principal Cartesian coordinates  comprise an adequate choice 
for characterizing stress space, but the yield function is often cast in terms of different 
independent variables to exploit the yield surface’s natural symmetries optimally. The nat-
ural symmetries suggest instead using cylindrical  coordinates — called Lode 
cylindrical coordinates — for which the z-axis is parallel with the [111] symmetry 
axis. We have placed a bar on the symbol  for the angular coordinate because we intend 
to define it so that it will be positive in TXC and negative in TXE. A constant  plane is a 
meridional plane, and a plot of  vs. . at a given value of  is called a meridional 
profile. Because most of the yield surface resides in the compressive domain where 

, we will usually display meridional profiles as  vs.  (where ). Any con-
stant-z plane is an octahedral plane, and any cross-section looking down the [111] axis 
(i.e., on a plane of constant ) is in an octahedral profile. Meridional and octahedral 
profiles are illustrated in Fig. 1.0 (page 1). 

In this report, the Lode angle  is defined so that it equals zero in SHR. It varies from 
 in TXE to  in TXC. Superimposing pressure on a stress state changes only the 

axial z-coordinate, leaving the octahedral  coordinates unchanged, which makes 
Lode coordinates a natural choice when decomposing tensors in to their isotropic and 
deviatoric parts. The radial  coordinate equals the magnitude of the stress deviator. The  
coordinate is proportional to the mean stress. The angular coordinate is a measure of the 
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The Stress Tensor
relative proportions of the principal values of the stress deviator. Thus, as the Lode angle 
varies from  to , the stress transitions through TXE, SHR, and TXC states. 
Cylindrical Lode coordinates are especially useful because they may be expressed in 
terms of stress invariants, thereby eliminating the need for an eigenvalue decomposition.

The axial z-coordinate is positive on the tensile part of the hydrostat, so  is positive 
on the compressive hydrostat. We define the Lode angle  to be positive in TXC and neg-
ative in TXE. The change in variables from principal coordinates to Lode coordinates per-
mits the yield function  to be alternatively expressed in the form . 
When phrased in terms of Lode coordinates, the yield function needs to be defined only 
over a  sextant on any octahedral plane. The symmetry properties of the yield surface 
may be used to reconstruct the octahedral profile over the full range from  to . 

Performing these necessary but tedious coordinate transformations from principal 
stresses to cylindrical Lode coordinates, it can be shown [31] that the cylindrical Lode 
coordinates may be determined directly from the , , and  scalar stress invariants, 
eliminating the need for an eigenvalue analysis. Specifically,

 (3.40a)

 (3.40b)

 (3.40c)

The square root coefficients are merely by-products of the coordinate transformations. For 
example, since the z-coordinate is the projection of the stress onto the [111] axis, the  
appears because the magnitude of the [111] vector is . The Lode radius r is zero if 

. Also, the Lode angle  is undefined when , which should not be too disturb-
ing since the angular coordinate for any cylindrical system is undefined when the point in 
question lies on the symmetry axis (which, in this case, is the [111] hydrostat). 

Later, when we give the mathematical formulation for the GeoModel yield function, it 
will be phrased as . Using the above formulas, the yield function is ultimately 
implemented in the form . The invariant  influences only the Lode angle. 
When simpler yield models (Drucker-Prager) are independent of the third stress invariant, 
they are therefore independent of the Lode angle, which makes their octahedral yield pro-
file a circle. The GeoModel must include a non-circular yield profile to reproduce TXE/
TXC strength differences clearly evident in the data for geological materials. Thus, the 
GeoModel must necessarily use all three Lode coordinates (equivalently, all three stress 
invariants).
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The Stress Tensor
Octahedral yield profile visualization. Given a yield function , yield 
profiles may be generated by solving  to obtain  expressed as a function of . 
A meridional profile is generated by plotting  vs.  at a fixed value of . An octahedral 
profile, which corresponds to a yield surface cross-section at a given value of , describes 
how the Lode radius at yield varies with the Lode angle. Rather than plotting  vs. , 
octahedral profiles are obtained by parametrically plotting Cartesian coordinates

 and  (3.41)

Here,  is an angle that varies over the full range from 0 to . The Lode angle , 
which is permitted to vary only over the range from  to ,  is generated from the 
full-range angle  by the sawtooth function

 (3.42)

With  known, the value of corresponding Lode radius  can be found from the yield con-
dition, and finally, the family of  points on the octahedral yield profile may be 
generated parametrically as  varies from 0 to , as illustrated in Fig. 3.4.
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Figure 3.4. An octahedral yield profile.   Geological materials tend to be stronger in TXC than in 
TXE, which is why the TXC axes are always on an apex of the rounded triangle (i.e., farther from the or-
igin, corresponding to higher strength). The Lode angle  alternates cyclically from  in TXE to  
in TXC because the yield threshold must be independent of the eigenvalue ordering.
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1

Meridional yield profile visualization. To draw a geometrically accurate meridi-
onal cross-section of the yield surface, the profile should be plotted as  vs.  for a given 
value of . Typically, we will plot the TXC ( ) profile. Using the  and  Lode 
coordinates as the axes in a meridional plot ensures that lengths and angles in the meridi-
onal profile will equal corresponding lengths and angles in stress space. Many times, how-
ever, we will depict a geometrically distorted view of the meridional profile by instead 
plotting  vs. , where the signed equivalent shear stress  equals , depending on 
whether the loading is closer to TXE or TXC. Recalling from Eqs. (3.40a) and (3.40c) that 

 and , a plot of  vs.  is equivalent to changing the aspect ratio 
of an  vs.  plot by a factor of , as illustrated in Fig. 3.5. Thus, whenever we 
plot the meridional profile as  vs. , keep in mind that the actual meridional cross-sec-
tion in stress space is smaller in width by a factor of 2.45. Meridional profile distortion is 
an issue only when ascertaining the direction of the yield surface normal. Figure 3.5
shows that the normal to the yield profile in a distorted plot does not correspond to the 
normal in stress space.
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Figure 3.5. Distortion of the meridional profile when using non-isomorphic stress measures.   Only a 
plot of  vs.  will result in a geometrically accurate depiction of a meridional cross-section of stress 
space for which angles and lengths are preserved. The middle plot shows the magnitude of the stress devi-
ator plotted against the pressure, resulting in a plot eccentricity of . The last plot shows the 
equivalent shear stress plotted against the first stress invariant, for a plot eccentricity of .
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The Stress Tensor
Closed-form solution for ordered eigenvalues. Recalling that Lode cylindrical 
coordinates merely represent a coordinate change from the principal coordinates 

 to a new set of coordinates , it follows that inverse transformation 
formulas should exist for obtaining the principal stresses from Lode coordinates. Each dis-
tinct sextant in Fig. 3.4 merely corresponds to a different eigenvalue ordering. Regardless 
of the sextant in which the stress resides,  falls on the pi-plane axis correspond-
ing to the smallest eigenvalue, whereas  falls on the axis of the largest eigen-
value. Therefore, transformation formulas that convert cylindrical coordinates back to 
Cartesian coordinates only need to be defined over the range from  through   to 
determine the ordered eigenvalues. 

Letting the compressive eigenvalues be ordered , the tensile eigenvalues 
must be ordered , and the inverse transformation formulas are

low:  (3.43a)

middle:  (3.43b)

high: .  (3.43c)

These formulas constitute a closed-form solution for the ordered eigenvalues of any real 
symmetric  matrix, not just a stress.*  Using these formulas, any yield function that is 
stated in terms of principal stresses, , can be immediately re-cast into a form 
expressed in terms of stress invariants, , which is more convenient for plastic-
ity modeling because it can be differentiated without an eigenvector analysis (see 
Eq. 3.16). For example, any material model that seeks to initiate failure when the largest 
tensile principal stress  reaches a critical value, , can do so by simply substituting 
Eq. (3.43c) into the failure criterion, . The above closed-form solution for 
ordered eigenvalues is applied in Appendix B (page B-22) to convert the Mohr-Coulomb 
theory of failure into a formulation expressed in terms of stress invariants, as required in 
the GeoModel.

* The solution quoted here is equivalent to the closed form solution derived by Malvern [32] via a 
trigonometric substitution. Malvern’s angle  is a Lode angle, but defined to be zero in TXE and 

 in TXC.
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GeoModel theory
4. GeoModel theory

Being a generalized plasticity theory, the GeoModel is founded upon an additive 
decomposition of the strain rate  into separate contributors:  from elastic straining and 

 from inelastic straining:

.  (4.1)

The GeoModel permits the host code to employ any definition of the strain so long as its 
rate is conjugate to the stress  in the sense that the work rate per unit volume is given by

.  (4.2)

To satisfy the principle of material frame indifference, the host code must cast the stresses 
and strain rates in an unrotated configuration. At present, all implementations of the Geo-
Model have approximated the strain rate by the unrotated symmetric part of the velocity 
gradient:

,  (4.3)

where  is the velocity vector,  is the current spatial position vector, and the tensor  is 
the rotation from the polar decomposition of the deformation gradient. The conjugate 
stress is the unrotated Cauchy stress defined in Eq. 3.39. Henceforth, all references to the 
stress  and the strain rate  must be understood to be the unrotated stress and strain 
rate.

All GeoModel material parameterizations to date have been based on the above 
approximation for the strain rate. Using a different choice for the conjugate stress and 
strain rate measures would, of course, entail adjusting material parameters appropriately. 
The strain rate in Eq. (4.3) is an approximation because, for general deformations, it is not 
precisely equal to the rate of any proper function of the deformation*. The approximate 
strain rate in Eq. (4.3) exactly equals the unrotated logarithmic (Hencky) strain rate for 
any deformation having stationary principal stretch directions. It is an excellent approxi-
mation to the Hencky strain rate even when principal stretch directions change orientation 
as long as the shear strains remain small (volumetric strains may be arbitrarily large). For 
geological applications, material rupture generally occurs well before shear strains 
become large, so Eq. (4.3) is a prudent choice for the strain rate measure. If, however, the 
model is to be subjected to significant cyclical loading (e.g. fatigue), then a proper strain 
rate should be used instead of Eq. (4.3) even if the distortional strains are always small.

* Paths can be devised for which the starting and ending configurations are identical, but the time 
integral of does not evaluate to zero [11].
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GeoModel theory
Elasticity
The GeoModel supports both linear and nonlinear hypoelasticity*. The GeoModel 

presumes the material is elastically isotropic and that the elastic stiffness tensor  is 
itself isotropic (i.e., deformation-induced elastic anisotropy is not included). Conse-
quently, the stress is governed by a rate form of Hooke’s law:

.  (4.4)

Because the elastic tangent stiffness tensor, , is presumed to be isotropic, Eq. (4.4) 
can be written as two separate and much simpler equations, one for the volumetric 
response and the other for the deviatoric response:

 (4.5)

and

.  (4.6)

Here,  and  are the tangent shear and bulk elastic moduli;  is the pressure (negative 
of the mean stress);  is the volumetric elastic strain rate computed by the trace opera-
tion,

,  (4.7)

 is the stress deviator; and  is the deviatoric part of the elastic strain rate, defined

.  (4.8)

We have used the overbar (which, recall, simply denotes the negative of a variable) in our 
equation for the pressure-volume response because the mean stress is typically compres-
sive (negative) in most applications of the GeoModel and therefore  and  are typically 
positive. Of course, Eq. (4.5) remains valid for volumetric expansion  and tensile 
mean stresses  as well. No overbar is used in Eq. (4.8) because deviatoric tensors 
always have eigenvalues of mixed signs.

For linear elasticity, the user merely specifies constant values for the bulk modulus  
and the shear modulus . For nonlinear elasticity, the moduli are stress-dependent tan-
gent moduli (i.e., slopes of the tangents to the stress-strain curves). Three parameters are 
available for fitting the nonlinear tangent bulk modulus  to laboratory data obtained 
from unloading curves in hydrostatic compression. Similarly, three parameters are avail-
able for fitting the nonlinear tangent shear modulus  indirectly from triaxial test data. 
Additional elastic parameters are available for materials whose elastic properties are 
affected by inelastic deformation (see Eqs. 4.33 and 4.34). Step-by-step instructions for 
determining elastic properties from measured data are provided in Appendix A. 

* “Hypoelastic” means the stress can be written as a function of the strain, but is not derivable from 
an energy potential. When a potential exists, then the formulation is “hyperelastic.” 
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GeoModel theory
Nonlinear elasticity. At the user’s option, the GeoModel supports nonlinear elasticity 
by permitting the elastic tangent moduli to vary with the stress according to

 (4.9)

.  (4.10)

In these equations, the  and  parameters are material constants determined via non-
linear regression fitting to the unloading portions of hydrostatic compression and triaxial 
compression experiments, as described in Appendix A.*  Further descriptions of the physi-
cal meanings of the parameters in these equations are given Appendix B. The GeoModel’s 
functional forms for the nonlinear elastic tangent moduli are phenomenological to permit 
tight empirical fits to experimental data for a wide variety of materials. Suitability of these 
functions for fitting material data is demonstrated in Chapters 8 and 9, starting on page 96.

Incidentally, it can be shown that an elasticity model of the form in Eq. (4.4) is hyper-
elastic (i.e., derivable from an isotropic elastic potential) if and only if the shear modulus 
is constant and the bulk modulus depends at most only on . Because Eq. (4.34) permits 
the shear modulus to vary, the GeoModel is hypoelastic if .

Assigning values to the elastic constants. The bulk modulus  is determined 
from the local tangent of the elastic part of a pressure vs. volumetric strain plot obtained 
from hydrostatic testing. Rather than determining the shear modulus directly from a shear 
loading experiment (where GeoMaterials tend to be weak), the shear modulus is typically 
found indirectly from triaxial loading data. For triaxial loading, the stress rates are related 
to the strain rates by†

           and           ,  (4.11)

where  and  are, respectively, Young’s modulus and Poisson’s ratio. If  and  are 
known, then the bulk modulus , the Lame modulus , and the shear modulus  may be 
determined from the well-known elasticity equations [18],

    .  (4.12)

Because the GeoModel casts its elasticity model in terms of the bulk modulus  and the 
shear modulus , the following formulas are convenient for converting various combina-
tions of elastic constants into expressions involving only  and  (see, for example, Ref. 
[18], page 139):

* The generalized nonlinear elasticity formulas on page 37 may be used when elastic properties 
appear to be affected by inelastic deformation. 

† Here, we are writing Hooke’s Law in rate form to allow for the possibility that the elastic moduli 
might be nonlinear. Thus, the elastic properties used here are the tangent moduli (i.e. based on the 
local slope of an elastic stress vs. strain curve).
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GeoModel theory
 (4.13)

 (4.14)

 (4.15)

      (uniaxial strain modulus — see Eq. 3.31).  (4.16)

Eq. (4.11) implies that triaxial experiments conducted under constant lateral stress 
 satisfy

. (this applies if lateral stress is constant)  (4.17)

A fixed lateral stress implies that . Thus, when a stress-strain curve is 
obtained by plotting the stress difference  against the axial strain  for a triaxial 
loading experiment in which the lateral stress is fixed, the local tangent of the curve equals 
Young’s modulus . With the bulk modulus  having been obtained separately from 
hydrostatic test data, Eq. (4.15c) may then be used to determine the tangent shear 
modulus .

The elastic limit (yield surface)
Like most plasticity models, the GeoModel begins each solution phase (i.e., each time 

step) by tentatively presuming that the loading is elastic. This produces a trial elastic 
stress, which is then checked to see if it is inside or on the yield surface. If so, the tentative 
assumption of elasticity is validated and the actual updated stress is set equal to the trial 
elastic stress. If, on the other hand, the trial elastic stress falls outside the yield surface, 
then the tentative assumption of elastic response was wrong, and the solution phase is then 
solved anew using the equations governing inelastic deformation. Before discussing these 
inelastic governing equations, we must first characterize the yield surface itself. We will 
begin by discussing yield surfaces in some generality and then progressively work 
towards the precise functional form for the GeoModel yield surface.

Mathematically, the GeoModel is a generalized plasticity model. The term “plasticity” 
is broadened to include not only the usual flow of material via dislocations (a phenomenon 
that has actually been observed in brittle materials when they are loaded under extraordi-
narily high confining pressure), but also any other mechanisms that lead to a marked 
departure from elasticity. Examples include crack growth, void collapse, or perhaps even 
phase transition. Rather than explicitly tracking each of these microscale failure mecha-
nisms explicitly, the “yield” surface itself characterizes them all in an ensemble phenome-
nological manner. If the stress state  is “not too severe,” then material 
response will be elastic and therefore reversible (non-dissipative). Once the stress 
becomes critically severe, however, the material will undergo irreversible structural 
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GeoModel theory
changes that manifest as inelastic strains (nonrecoverable upon removal of the load). The 
material response is elastic whenever the stress is on the inside of the yield surface. If con-
tinuing to apply elasticity theory would move the stress into regions outside the yield sur-
face, then plasticity equations are applied. 

The GeoModel yield criterion and yield function are

GEOMODEL YIELD CRITERION: 

.  (4.18)

GEOMODEL YIELD FUNCTION: 
.  (4.19)

The remainder of this chapter is devoted to motivating the functional forms of these equa-
tions and defining the numerous variables that appear in them. Briefly, the yield function  
is defined such that elastic states satisfy . The yield criterion corresponds to . 
The “building block” functions  and  are used to describe the elastic limit caused by 
the presence of microcracks, whereas the function  accounts for strength reduction by 
porosity. The function  represents the ultimate limit on the amount of shear the material 
can support in the absence of pores (i.e.,  represents the softening transition limit thresh-
old, sketched in Fig. 1.1, resulting exclusively from microcracks). The material parameter 

 characterizes the maximum allowed translation of the yield surface when kinematic 
hardening is enabled, in which case  is the second invariant of the shifted stress tensor 

, where  is the backstress. When kinematic hardening is disabled (i.e., when 
 is specified to be zero), the backstress will be zero and therefore  would be simply 

the invariant of the stress deviator. The function  describes the limit strength, whereas 
 defines the yield threshold associated with cracks, which can evolve toward the 

limit surface via kinematic hardening as explained later in the context of Fig. 4.7. The 
function , where  is the Lode angle of the shifted stress, is used to account for 
differences in material strength in triaxial extension and triaxial compression. By appear-
ing as a multiple of , the function  accommodates material weakening caused 
by porosity. The function  depends on an internal state variable  whose value controls 
the hydrostatic elastic limit, as explained later in the context of Figs. 4.4, 4.5, and 4.15.
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GeoModel theory
The principal goal of this section is to describe in great detail the physical motivations 
of the GeoModel yield criterion cited in Eq. (4.18). This criterion describes the geometri-
cal shape of the yield surface in stress space. For rocks and rock-like materials, the yield 
surface will have a shape similar to the one illustrated in Fig. 1.0 (page 1).*  Figure 1.0(b)
shows a “side” meridional profile of the yield surface in bold, along with a family of 
other profiles from which the yield surface might have evolved over time (via continu-
ously varying values of the  internal state variable); Fig. 4.7 shows a similar plot when 
kinematic hardening is allowed. Very little of the yield surface in Fig. 1.0(b) exists in the 
tensile domain (left side of the meridional plot), implying that materials of this type are 
very weak in tension.

Figure 1.0(c) shows the yield surface profile from a perspective looking down onto a 
plane — called an octahedral plane — that is perpendicular to the [111] symmetry axis 
and therefore represents a cross-section of the yield surface at a given pressure. Since the 
onset of yield must not depend on the ordering of the principal stresses, the yield surface 
for any isotropic yield model possesses  rotational symmetry about the hydrostat 
(i.e., the [111] axis), as well as reflective symmetry about any of the triaxial compression 
or triaxial extension axes labeled TXC and TXE in Fig. 1.0(c). As seen in Fig. 1.0(c), the 
octahedral profile is somewhat triangular in shape. This periodic asymmetry corresponds 
to differences in the failure limit under triaxial compression (TXC) and triaxial extension 
(TXE). Because the yield surface is farther from the origin on a TXC axis than on a TXE 
axis, this material has higher strength in TXC than in TXE. The  function character-
izes the shape of the octahedral profile because  is proportional to . The size of 
the octahedral profile at various pressures is governed by the functions  and . 

Elastic stress states are “inside” the yield surface ( ). Stress states for which  
are said to be “on the yield surface.” Like classical plasticity models, the yield surface in 
the GeoModel characterizes the point of departure from elastic to inelastic behavior. When 
the stress is on the yield surface, and if applying elasticity theory would result in an 
updated stress that falls outside the yield surface, then plasticity equations will be applied. 
Stress states outside the yield surface for which  are unachievable except through a 
hardening evolution of the internal state variables (  and/or ) corresponding to a funda-
mental change of the underlying microstructure of the material. Stresses outside the limit
surface are unachievable by any quasistatic means.

The internal state variable  controls the location of the yield cap (wire frame in 
Fig. 1.0a on page 1). When  increases in response to pore collapse, octahedral profiles 
that pass through the cap will expand isotropically (i.e., the octahedral profile changes 
size, but not shape, and it does so without translating in stress space). The amount of iso-
tropic expansion or contraction varies with pressure in such a manner that the family of 
yield surfaces corresponding to various values of  is bounded by the shear limit surface, 

. 

* At the user’s option, the GeoModel parameters can be set to alternatively duplicate classical ideal-
ized Von Mises or Mohr-Coulomb theory. Doing this would be inappropriate when modeling real 
materials, but it can be useful in benchmark testing. 
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GeoModel theory
Though not needed in many applications, 
the GeoModel supports kinematic hardening for 
which the symmetry axis of the yield surface is 
permitted to shift in stress space so that the 
invariants in the yield function are based on the 
shifted stress tensor, defined

.  (4.20)

As illustrated in Fig. 4.1, the backstress  
is a deviatoric tensor-valued internal state vari-
able that defines the origin about which the 
yield surface is centered. When the backstress 
tensor changes, the yield surface translates in 
stress space, thereby supporting deformation-
induced anisotropy (Bauschinger effect) in a 
limited capacity. The backstress is initially zero, 
but then evolves according to an evolution equation described in detail on page 59. The 
GeoModel is otherwise fully isotropic, both elastically and plastically. Consequently, the 
yield function is isotropic with respect to the shifted stress deviator , implying that it 
depends on the invariants of the shifted stress deviator, as well as  and an internal state 
variable  that characterizes isotropic hardening caused by void collapse or softening 
caused by porosity increases. Specifically, the GeoModel yield function is of the form

,  (4.21)

where

           and           .  (4.22)

In this section, we seek to describe the size and shape of the yield surface at an instant fro-
zen in time. Thus, we will focus on how the yield function depends mathematically on the 
stress invariants , with the internal state variables (  and ) regarded as con-
stants. The means by which the yield surface evolves in response to time variation of  
and/or  is discussed separately. 

Before discussing the physical foundations of the GeoModel yield function in 
Eq. (4.19), we will first discuss qualitative features of any yield function of the more gen-
eral form in Eq. (4.21). Given that an isotropic yield function possesses alternating  
symmetry about the [111] direction in stress space, the yield function in Eq. (4.21) is most 
naturally cast in terms of the cylindrical Lode coordinates as

,  (4.23)
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GeoModel theory
where these Lode coordinates are defined with respect to the kinematically shifted origin 
in stress space. For any given values of , , and , there must exist only one radius  
that is a solution to  (otherwise, the yield surface would not be convex). 
Thus, without loss in generality, elastic stress states for any isotropic yield function always 
can be characterized in the general functional form

,  (4.24)

where  is regarded as a material function determined from experimental data and 
is introduced here only to discuss the structure of isotropic yield functions in generality 
(i.e., the GeoModel has an implied “g” function, but does not construct one explicitly). 
The yield function corresponding to Eq. (4.24) may be written

     (Any isotropic yield function can be written in this form.)  (4.25)

At present, the GeoModel assumes that the shape of the octahedral yield profile is the 
same at all pressures — only its size varies with pressure.* Moreover, the GeoModel pre-
sumes that the shape of the octahedral yield profile is constant in time (i.e., it does not 
evolve to any different shape in response to plastic deformation even though it can permis-
sibly vary in size and translate in stress space). Consequently, the GeoModel’s yield func-
tion is structured such that  is separable into the product of two distinct 
functions, one depending only on  and the other depending only on  and , permitting 
Eq. (4.24) to be structured in the general form:

     (This form results from a separability assumption.)  (4.26)

As was the case with the g function,  and  have been introduced here only to illus-
trate the basic structure of the GeoModel’s yield function. The GeoModel’s specific for-
mulations will be discussed soon. A degree of ambiguity exists in the definitions of  
and  because they may be replaced respectively by  and  for any scalar  
without loss in generality. To remove this ambiguity, the function  is scaled such that it 
merely describes the shape of the octahedral profile (i.e., the view of the yield surface 
looking down the [111] direction). The function  defines the meridional profile of the 
yield function, and therefore this function also defines the size of the octahedral profile. 

The GeoModel aims to model rocks and rock-like brittle materials. The mechanical 
behavior of such materials is typically driven by two underlying mechanisms: porosity 
and microcracks. To date, microphysical research has focused on the effects of only one of 
these mechanisms at a time. Figure 4.2(a) shows the qualitative shape of the meridional 
profile typically that is predicted when only porosity is considered. In this case, the merid-
ional yield profile is a “cap” function that is essentially flat like a Von Mises profile for a 
large range of pressures (  is proportional to pressure), and then the profile drops to zero 
when pressure becomes large enough to collapse voids. Figure 4.2(b) shows the general 

* Some evidence suggests that the octahedral yield profile should in fact vary in shape from strongly 
triangular at low pressures to nearly circular at extraordinarily high pressures [23]. Consequently, 
the GeoModel’s current assumption of a constant octahedral profile shape might change in future 
releases.
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(

shape of a meridian profile that is typically predicted for theories that consider only the 
influence of microcracks without considering porosity. Microcracks lead to low strength in 
tension, but strength increases as pressure is increased because pressure generates addi-
tional friction at crack faces, thereby reducing the shear load suffered by the matrix mate-
rial. The GeoModel, unifies these separate microscale theories to obtain a combined 
porosity and microcrack model as sketched qualitatively in Fig. 4.2(c). Loosely speaking, 
the GeoModel obtains the combined meridional yield function by multiplying the individ-
ual porosity and microcrack profiles (and scaling the ordinate appropriately to match 
data).

To date, the combined effect of voids and microcracks remains a poorly developed 
branch of materials constitutive modeling. Some early models simply asserted that a mate-
rial is elastic (safe from yield) only if it is safe from both crack growth and void collapse, 
with each criterion tested separately. However, as illustrated in Fig. 4.3(a), this approach 
results in a discontinuous slope in the meridional yield profile and fails to account for 
interactions between voids and cracks. The GeoModel [Fig. 4.3(b)], phenomenologically 
permits cracks and voids to interact in a way that results in a continuously differentiable 
meridional profile, making the GeoModel better-suited for reproducing observed data.

zz

rc z( ) rf z( )

z

r z( )

Figure 4.2. Qualitatively meridional profile shapes resulting from (a) porosity alone, (b) microcracks 
alone, and (c) porosity and microcracks in combination. 
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GeoModel theory
The GeoModel achieves a combined porous+cracked yield surface by multiplying the 
fracture function  in Fig. 4.2(b) times the cap function  in Fig. 4.2(a) so that

  is proportional to .  (4.27)

The proportionality factor depends on the Lode angle  so that the equivalent shear stress 
at yield (which, recall, is simply a constant multiple of ) can be made lower in TXE than 
in TXC. Cap functions depend on the porosity level (which controls where the cap curve 
intersects the z-axis). The curvature of a cap function controls the degree to which porosity 
affects the shear response. Although the GeoModel does not explicitly track porosity, it 
does include an internal state variable  that equivalently accounts for the presence of 
porosity. As explained later (page 50), the value of  and one additional material constant, 

, determine both the cap curvature and the location where the cap intersects the 
hydrostat (the  axis). Thus, the cap function  implicitly depends on  and .

Recalling that the Lode cylindrical radius  equals  and the Lode axial coordi-
nate  is proportional to , the GeoModel implements the notion of multiplying fracture 
and cap functions by using Eq. (3.40) to express Eq. (4.27) in terms of stress invariants 
instead of Lode coordinates, so the GeoModel yield function is of the form

.  (4.28)

Comparing with Eq. (4.18),   the  f  and  F  functions are related by

       and       .  (4.29)

The invariant  is computed using the shifted stress tensor , where  is the 
deviatoric tensor-valued backstress that is nonzero only when kinematic hardening is 
enabled. Thus, in addition to depending explicitly on the stress tensor, the yield criterion 
depends implicitly on material constants and on two internal state variables,  (mentioned 
earlier) and .

The fracture function  characterizes the cracking-related portion of the meridional 
yield profile. The GeoModel cap function  is normalized to have a peak value of 1. The 
function  characterizes the Lode angle dependence of the meridional profile and is 
normalized to equal 1 in triaxial compression . At different Lode angles,  usu-
ally has values greater than 1, which (because it is a divisor in Eq. 4.28) reduces equiva-
lent shear strength. Rather than regarding  as a strength reducer, it can be alternatively 
interpreted as a stress intensifier. Qualitatively, these functions are typically shaped as 
shown in Fig. 4.4.

rf z( ) rc z( )

r z( ) rf z( )rc z( )

θ
r

κ
κ

R
z rc z( ) κ R

r 2J2
ξ

z I1

J2
ξ ff I 1( )fc I 1( )

Γ θ( )
------------------------------=

ff Ff N–= fc Fc=

J2
ξ ξ

˜̃
S
˜̃

α
˜̃

–≡ α
˜̃

κ
α
˜̃

ff
fc

Γ θ( )
θ 30°=( ) Γ

Γ

34



GeoModel theory

(

As explained on page 43, the precise expression for the  function is determined by 
user-specification of two parameters: the TXE/TXC strength ratio  and an integer-val-
ued option (J3TYPE), which controls the manner in which the octahedral profile radius 
varies from the value  at TXE to 1 at TXC. As explained below, the porosity (cap) 
function  is defined by two parameters: the initial intersection  on the horizontal axis 
and the eccentricity or “shape factor”  for the ellipse (i.e., the width to height ratio of the 
ellipse). As explained on page 56, the GeoModel internally computes evolution of the cap 
function resulting from void collapse. As explained on page 41, the very important  
function, which reflects influence of microcracks, is determined by fitting triaxial com-
pression data to an exponential spline [up to five parameters ( , , , , )]. Stan-
dard experiments (needed to assign values to these parameters) are discussed in 
Appendix A. The remainder of this chapter is dedicated to providing further details about 
the three key functions , , and  used in the GeoModel.
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Figure 4.4. Basic shapes of the three key functions that characterize the composite shape of the yield sur-
face.   (a) Lode angle dependence, (b) porosity cap curve, (c) limit failure curve. The Lode angle function  
is the reciprocal of the radius in the octahedral plane, making it best regarded as a stress intensifier;  is 
normalized to equal 1 in triaxial compression, which implies that it must equal  in triaxial extension (where 

 is the TXE/TXC strength ratio). Shear influence on void collapse begins at the point where the cap function 
branches into an ellipse. Since the cap function is multiplied by the fracture curve, this transition point also 
marks where the composite GeoModel failure surface branches away from , beyond which macroscale re-
sponse is influenced simultaneously by both cracks and voids. For pure (shear-free) hydrostatic compression, 
void collapse begins at the point where the ellipse intersects the horizontal. Only the function  has dimensions 
of stress (the others are dimensionless).

Γ θ( )
Γ θ( )

1 ψ⁄
ψ

ff

ff

I 1

fc I 1( ) Fc=

1

a) (b) (c)κ

Γ
ψ

1 ψ⁄
fc p0

R

ff

a1 a2 a3 a4 N

fc ff Γ
35



GeoModel theory
The cap function, fc. Under compression, the pores in a material can irreversibly col-
lapse, thereby resulting in permanent (plastic) volume changes when the load is removed. 
Plastic volume changes can occur for porous media even if the matrix material is plasti-
cally incompressible. Permanent volume changes can also occur if a material undergoes 
an irreversible phase transformation. The GeoModel supports plastic volume changes, but 
it does so without explicitly modeling the underlying microphysical mechanisms. None-
theless, the GeoModel does reflect the influence of micromechanical theory by phenome-
nologically incorporating plastic volume changes observed in hydrostatic loading. To 
motivate the GeoModel’s cap theory, we will explain the equations and their qualitative 
features in the context of porosity, but keep in mind that any other microphysical compac-
tive mechanisms are equally well accommodated by the phenomenological cap model.

The cap function  accounts for the presence of pores in a material by controlling 
where the yield function will intersect the  axis in compression. This intersection point 
corresponds to  and, because we are considering compressive states, we will 
denote the value of  at the intersection point by , where  is the pressure 
(positive in compression) at which inelastic deformation commences in purely hydrostatic
loading for a given level of porosity. As voids compress out, the value of  will change, 
as explained later when we discuss the evolution equations for the GeoModel’s internal 
state variable . Porosity also degrades material shear strength because, recalling 
Eq. (4.28), the cap function effectively reduces the nonporous yield strength, defined pre-
viously by the fracture function . 

The GeoModel employs a cap function* defined

 (4.30)

* evaluated in the code by a Pelessone [34] function, .
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GeoModel theory
Neither  nor  are user-supplied material parameters. Instead, these variables are com-
puted internally within the GeoModel code by enforcing consistency with more intuitive 
user-supplied parameters obtained from hydrostatic testing (see page 55).

The equation of the elliptical portion of the cap curve is

.  (4.31)

The intersection point  will be later related to the value of  so that knowledge of the 
internal state variable  will be sufficient to compute a value for . For now, while 
describing the geometry of the yield surface, both  and  should be regarded as internal 
state variables whose values are computed internally in the GeoModel using evolution 
equations discussed later. Rather than using  directly, recall that the GeoModel uses the 
function  that is simply the square of  given in Eq. (4.30):

.  (4.32)

Elastic-plastic coupling. The cap model is used when the material being studied 
contains enough porosity (or highly compliant second phase inclusions) so that inelastic 
volume reduction become possible through irreversible reduction of void space. Intu-
itively, one might expect the elastic moduli to stiffen as voids collapse, but the material 
might actually become more elastically compliant as shown in Fig. 8.4 (a phenomenon 
that might be explained, for example, by rubblization of a ligament network). Regardless 
of its microphysical origins, the elastic moduli are permitted to vary with plastic strain by 
generalizing the nonlinear elastic moduli expressions in Eqs. (4.9) and (4.10) to

 (4.33)

.  (4.34)

In the absence of joints, the scale factors  and  equal 1.0; otherwise, they are com-
puted internally within the GeoModel as described in a separate sequel report. In the 
above equations,  is the equivalent plastic shear strain (which, for proportional load-
ing, is conjugate to the equivalent shear stress, ), and  is the plastic compaction vol-
ume change. Mathematically,

 (4.35)

.  (4.36)

Though defined mathematically as stated, the GeoModel computes the plastic volume 
change,  indirectly, as explained later in the context of Eq. (4.67).
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GeoModel theory
Meridional shear limiter function, Ff . In a loose sense, the previous sub-section 
described the GeoModel’s cap function  by considering a material that contained pores, 
but no cracks. In this sub-section, we describe the GeoModel’s fracture function  by 
considering a material that contains microcracks but no porosity. Numerous microphysical 
analyses (as well as a preponderance of data) suggest that, for microcracked media, the 
onset of “yield” depends on all three stress invariants, which implies that the yield func-
tion for microcracked media must depend on all three cylindrical Lode coordinates. The 
GeoModel supports this singularly common prediction of microscale damage theory. 
Though they differ in specific details, microphysical damage theories and laboratory 
observations for brittle materials also tend to share the following qualitative features:

• At a given mean stress, yield in triaxial extension (TXE) occurs at a lower stress than 
in triaxial compression (TXC), which implies that octahedral yield profiles are 
generally triangular (or distorted hexagon) in shape, with the triangle apex being 
located on TXC axes, as sketched in Fig. 1.0(c) on page 1.

• Brittle materials are very weak in tension. This implies that the meridional yield 
profile will include few if any tensile stress states. Brittle materials are also vulnerable 
to shear cracking at low pressures, but they become able to support increasingly large 
shear stresses as pressure is increased because friction at crack faces helps reduce the 
shear load that must be suffered by the matrix material itself. Thus, in the absence of 
porosity, the meridional profile is expected to monotonically increase with pressure.

• When microscale theories regard brittle crack fracture to be the only failure 
mechanism, they predict that the material strength (i.e., the Lode radius at failure) will 
increase monotonically with increasing pressure, so that the meridional profile 
expands in an ever-expanding cone-like shape like the limit surface in Fig. 1.1. 
Microphysical idealizations such as Mohr-Coulomb theory predict the meridional 
profile is a straight line whose slope is directly related to the friction coefficient. 
When microscale theories allow for both crack growth and ductility of the matrix 
material, they predict that the increase in strength from friction will continue only 
until ductile yield (at extraordinarily high pressures) becomes more likely; such 
theories correspond to a meridional yield profile that is cone-like at low to moderate 
pressures but asymptotes to a zero slope (like a Von Mises cylinder) at high pressures.

Given the wide variety of microscale predictions for the meridional profile, the GeoModel 
is equipped with a four-parameter exponential spline that is capable of replicating any of 
these microphysical idealized theories, as well as actual observed material yield and rup-
ture response at low and moderate pressures (i.e., at pressures well below the cap elastic 
limit) so that observed data primarily reflect microcrack damage rather than combined 
cracking with pore collapse (covered elsewhere in this report). 
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GeoModel theory
In the meridional plane (i.e., at a given value of the Lode angle), the yield surface
characterizes the transition boundary for inelastic flow. Stress states that were, at one time, 
outside the yield surface might become realizable through hardening evolution of the yield 
surface. However, the allowable amount of hardening is not unbounded. At some point, 
the material will fail catastrophically (i.e., rupture). Often, the stress at rupture is smaller
than the peak stress. Stress-strain curves might or might not exhibit post-peak softening, 
depending on whether or not the experiment is stress-controlled or strain-controlled. 

The peak stress (not the stress at rupture) defines the stress-carrying limit of the mate-
rial. As first mentioned on page 5, the limit surface is the boundary of all stress states 
that the material is capable of supporting. Many of these achievable stress states can be 
reached only through inelastic processes. Appendix A (step 4 on page A-5) describes in 
detail how to determine the limit surface from experimental data. Mathematically, the 
limit surface is characterized by a limit function that is similar in form to the yield func-
tion. Specifically, the limit surface is defined by , where

.  (4.37)

The limit function  depends only on , not on any internal state variables. A yield 
function , on the other hand, depends on the backstress tensor  and on the sca-
lar internal state variable . Unlike a yield surface, which can evolve over time because it 
depends on time-varying internal state variables, the limit surface is fixed in stress space. 
The yield function is presumed to share some qualitative features with the shear limit sur-
face, but depends additionally on internal state variables as follows:

,    where    .  (4.38)

When examining experimental data, it is generally easier to determine the maximum 
limit point than the point at which plasticity first begins. Consequently, the GeoModel 
provides an empirical fitting function  for the limit surface in the meridional plane, and 
the initial meridional yield surface is simply , reduced perhaps by a cap function  
if the material initially contains voids. Comparing Eq. (4.38) with (4.37) reveals that the 
yield surface inherits its octahedral profile shape (i.e., its Lode angle dependence) from 
the limit surface. The size of the yield octahedral profile is generally smaller than the limit 
surface profile because of the multiplier (cap) function , which represents the effect of 
porosity. The yield surface origin is also offset from the limit surface origin by an amount 
governed by the kinematic hardening backstress tensor . The limit surface always has a 
[111] symmetry axis passing through the actual (not kinematically shifted) origin in stress 
space. When kinematic hardening is enabled, the yield surface has a symmetry axis paral-
lel to [111] that is off-set so that it does not pass through the origin.
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GeoModel theory
When advancing the solution, the 
initial meridional profile can harden 
kinematically and/or isotropically. The 
equations governing yield surface evo-
lution are designed to permit only a 
limited amount of hardening. As 
sketched in Fig. 4.6, the initial yield 
surface is permitted to translate upward 
in the meridional plane by no more than 
a user-specified limit . 

When the yield surface has reached 
the limit surface and when the stress 
itself lies on the limit surface, the mate-
rial will begin to soften. At that point, a 
constitutive-level description of mate-
rial response no longer remains possi-
ble; the host code must intervene by 
inserting void or by invoking special elements capable of supporting displacement discon-
tinuities. The limit surface marks the point at which a continuum material model is inade-
quate to characterize macroscale material response because softening localization 
becomes possible. Before reaching the limit surface, material response is handled entirely 
by the GeoModel.

The shifted shear limiter function 
 defines how the shear stress 

at yield varies with pressure for a non-
porous, but microcracked, material in 
its initial (virgin) state. When this 
microcrack yield function is combined 
with the cap function  the 
actual shear stress at yield is further 
reduced because porosity makes inelas-
ticity possible even for purely hydro-
static compression (i.e., loading along 
the  axis). The GeoModel evolves 
this combined porous yield function in 
such at way that the yield surface grows 
up to the limit surface. The GeoModel 
does not handle material response after
reaching the limit surface. Properly, upon receiving a “limit-arrival” signal, the host code 
must, at this time, initiate scale-dependent softening localization through the use of void 

I 1

limit surface, F f(I 1)

initia
l

J2

Figure 4.6. Kinematic hardening.   The user defines 
parameters  for the ultimate shear limit 
surface. The initial yield surface is identical except 
shifted down by a user specified amount . Kinematic 
hardening allows the initial yield surface to translate 
until reaching the ultimate failure surface (at which 
point, the host code must initiate “element death” or 
perhaps some other strategy for supporting macroscale 
softening.
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Figure 4.7. Yield surface evolution with both micro-
cracking and porosity.   For real materials, that contain 
both cracks and voids, it is difficult to identify a single 
envelope for the combined porous/cracked fracture 
yield function . However, ultimate failure data can be 
more readily mapped out.
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GeoModel theory
insertion or special elements that support displacement discontinuities. If the host code 
fails to initiate a softening algorithm, the GeoModel will treat the limit surface as if it were 
a nonhardening yield surface (making its post-peak predictions robust, but undoubtedly 
inaccurate).

The GeoModel supports modeling microcracked material by providing flexible fitting 
functions that can reproduce octahedral and meridional yield profiles observed for real 
materials. In particular, the shear limit function used in the GeoModel is of the form

, where      shear limit surface in TXC. (4.39)

where the  are user-specified material parameters determined from experimental data as 
explained in Appendix A. The initial (nonporous) meridional yield profile is 

              initial yield surface (non-porous).  (4.40)

where  is the user-specified shift factor. Therefore,  is the zero pressure intercept 
of the nonporous meridional yield surface on the  axis. Frequently,  is taken to be 
zero. The shear limiter function, Eq. (4.39), asymptotes to a linear envelope, as indicated 
in Fig. 4.8. To force the material to obey a Von-Mises type yield response at extremely 
high pressures, the slope coefficient  is merely set to zero.

Let us now explain why the shear limiter function has the general shape depicted in 
Fig. 4.8. Then we will list constraints on the model parameters necessary to achieve this 
shape. Brittle materials fail at very low shear stresses when the pressure is low, but they 
are able to sustain higher levels of shear stress without failing if loaded under higher con-
fining pressures. Consequently, the shear limiter function is expected to increase monoton-
ically with pressure. Or, since  is proportional to the pressure,  is expected to 
increase monotonically with . Furthermore, a fundamental tenant from plasticity theory 
is that the yield function must be semi-convex, which implies that the second partial deriv-
ative of  must be negative or zero. When we speak of the “shear” stress at failure, 
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Figure 4.8. Shear limiter function (unshifted and shifted).   The shifted function should be regarded 
as a nominal shape of the yield surface in the meridional plane, although porosity further lowers and 
distorts the meridional yield profile by multiplying the shifted shear limit function by .Fc
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GeoModel theory
we are effectively speaking of the value of the Lode radius at failure corresponding to the 
Lode angle for the stress state. For any cylindrical coordinate system — including the 
Lode system — the radius must always be non-negative and therefore  is defined only 
over the domain for which it yields positive values. Finally, in its virgin state, any material 
should be unfailed at zero stress, which means that the origin must fall below the meridi-
onal yield profile. All of these physical considerations lead to the following constraints on 
allowable values for the parameters:

unloaded virgin material must be below yield  (4.41)

non-negative slope at low pressures  (4.42)

positive Lode radius  (4.43)

convexity condition  (4.44)

. non-negative slope at high pressures  (4.45)

Specific values for these model parameters are determined from triaxial test data, as 
explained in Fig. 3.3 on page 16 (and in Figs A.4 and A.5 of Appendix A). Sample fits of 
the GeoModel’s shear limit function to data can be found in Fig. 8.1 on page 96 and 
Fig. 8.5 on page 99. 

The complete GeoModel yield function.     
Equation (4.28) is the yield criterion. The yield function  must be negative for all 

elastic states (inside the yield surface), zero for all stress states satisfying the yield crite-
rion (on the yield surface), and positive for all stress states (outside the yield surface) that 
cannot be reached except through an inelastic process — if at all. For computational rea-
sons, the GeoModel’s yield function is based on the square of Eq. (4.28):

.  (4.46)

When kinematic hardening is used, the stress invariants,  and , are those for the kine-
matically shifted stress tensor, . Otherwise, when kinematic hardening is dis-
abled, these are simply the stress invariants. Of course,  is the first invariant  of the 
stress tensor . (Since backstress  is deviatoric, ).

The building block functions  and  are implemented in the GeoModel in a slightly 
altered form by being expressed in terms of the shear limit function  and an alternative 
(computationally more efficient) cap function :

 (4.47)

.  (4.48)

The first of these equations allows the user to specify a maximum amount, , that the 
yield function is permitted to translate under kinematic hardening. Thus, the function  
can be regarded as a “limit” or “softening” envelope, beyond which stresses can never be 
reached quasistatically (not even via hardening). The second equation recasts the  func-
tion as the square root of a different function  for computational reasons. The second 
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GeoModel theory
equation also shows explicitly the presence of the internal state variable  related to the 
isotropic hardening part of the GeoModel associated with void collapse. The internal state 
variable  marks the branch point where combined porous/cracked yield surface deviates 
from the nonporous yield surface. As explained on page 56, this branch point is deter-
mined internally within the GeoModel in a manner that ensures consistency with mea-
sured hydrostatic data.

In terms of the new building block functions, the critical Lode radius in triaxial com-
pression (TXC), where , may be expressed as a function of the Lode axial coor-
dinate  as

.  (4.49)

Plotting  vs.  (at a given value of ) will produce a geometrically accurate visual-
ization of the meridional yield profile. Often we instead plot  vs.  to label the axes 
with more broadly recognized stress measures, but in doing so we are actually showing a 
geometrically distorted view of the yield profile, as explained on page 23. 

Substituting Eqs. (4.47) and (4.48) into (4.46) gives the yield criterion cited at the 
beginning of this section [Eq. 4.18]. 

The “J3TYPE” Lode-angle function, Γ. This section describes available func-
tional forms for the Lode angle dependence function . This function controls the 
shape of the octahedral yield profile. Since this function controls only the shape, not size, 
of the octahedral profile, its magnitude is inconsequential. The  function is normalized 
to equal unity in TXC ( ).* At other Lode angles, . Thus, since  
appears in the yield function as a multiplier of , it acts as a pseudo stress raiser, causing 
yield to occur at smaller values of  at Lode angles differing from the fiducial (TXC) 
angle where . To ensure convexity of the octahedral yield profile, the Lode 
angle function must satisfy

.  (4.50)

A hallmark trait of rocks and rock-like materials (concrete, ceramics, etc.) is a higher 
strength in triaxial compression than in triaxial tension at any given mean pressure. 
Loosely speaking, this characteristic results from friction at crack faces being able to carry 
a larger portion of the load under compression, therefore sparing the surrounding matrix 
material from having to carry the entire resolved shear stress at crack tips. Classical Mohr-
Coulomb theory, which is supported by the GeoModel primarily for comparisons with ide-

* With this normalization, the  meridional function then quantifies the pressure-varying size of 
octahedral profiles
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GeoModel theory
alized analytical solutions, has an octahedral profile in the shape of a distorted hexagon, 
causing considerable computational difficulties when dealing with the vertices. The com-
putational attractiveness of removing yield surface corners has motivated numerous pro-
posals of smoothed three-invariant models for frictional materials [29,28,3,47,7], and 
Lade [30] was among the first efforts to additionally include curvature in the meridional 
plane. According to Borja, et. al. [6], there is evidence that smoothed yield surfaces cap-
ture mechanical response more accurately than vertex models, but these authors point to 
no data to back up this claim. The GeoModel presently supports three yield-type options 
(specified by a value of 1, 2, or 3 for the user parameter, J3TYPE):

1.Gudehus (an efficient smoothed profile, with restrictions on convexity)
2.Willam-Warnke (a relatively inefficient smooth profile with no convexity constraints)
3.Mohr-Coulomb (distorted hexagon polygon)

The Gudehus and Willam-Warnke options both correspond to fully differentiable yield 
functions (no vertices). The Mohr-Coulomb option (which is available principally for 
comparisons with analytical solutions) is differentiable everywhere except at triaxial states 
where yield surface vertices require special numerical handling.*

Recognizing logistical constraints of most laboratories, the GeoModel presumes that 
experimental data are available at most only for a limited number of canonical loading 
paths: perhaps triaxial extension ( ), perhaps simple shear ( ), and almost cer-
tainly triaxial compression ( ). Regardless of which yield-type (Gudehus, Willam-
Warnke, or Mohr-Coulomb) is selected, the shape of the octahedral yield profile is 
described, in part, by user specification of a parameter , equal to the triaxial exten-
sion/compression (TXE/TXC) strength ratio at a given pressure. The GeoModel 
presumes that only the size of the octahedral yield profile — not its shape — varies with 
pressure. Consequently, the strength ratio  equals its user-specified value at all pressures 
and throughout the entirety of the simulation (i.e.,  is a constant, not a time varying 
internal state variable). Appendix A gives instructions for inferring a value of  from 
experimental data.

* The GeoModel averages directions on either side of the vertex if the strain rate points within the 
limiting (Koiter) fan of unit normals. If the strain rate points within a sextant of the octahedral 
plane, then the normal in that sextant is used.
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GeoModel theory
Precise functional forms of available Lode angle functions are given below:

1. Gudehus: .  

To satisfy the convexity requirement of Eq. (4.50), the strength ratio must satisfy .

2. Willam-Warnke: ,  

where .      The Willam-Warnke option is convex for .

3. Mohr-Coulomb: . Here, the internal friction 

angle φ is the angle of the failure envelope in the Mohr-diagram ( , where  
is the coefficient of friction). Within the GeoModel,  is determined from the user-

supplied strength ratio by .      The Mohr-Coulomb option is convex for .

These three options are distinguished by how the octahedral yield profile varies in stress space in 
the transition from TXE to simple shear to TXC at a fixed pressure. Graphs of the octahedral yield 
profile corresponding to any of the above options may be constructed by parametrically plotting

          (4.51)

Here,        ,        where    .  (4.52)

The angle  varies from 0 to , and therefore  varies between  and .
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GeoModel theory
As illustrated in Fig. 4.9, the Mohr-Coulomb model (J3TYPE=3) interpolates linearly 
in octahedral stress space, resulting in a distorted hexagon if , a perfect hexa-
gon (Tresca) if , and a triangle if . For a detailed explanation of the Mohr-
Coulomb formulation, see Appendix B (page B-22). The Mohr-Coulomb model has yield 
surface vertices at , which results in extra computational effort to determine 
plastic strain rates in triaxial states. The Gudehus and Willam-Warnke options, on the 
other hand, involve no yield surface vertices, which speeds up computations. The Gude-
hus option is the default because of its computational simplicity, but it supports only a lim-
ited range of TXE/TXC strength ratios, the Willam-Warnke option should be used if a 
rounded but strongly triangular octahedral yield profile is desired. Appendix A (STEP 6) 
provides guidance for selecting the Lode angle option most appropriate for matching 
experimental data.

The GeoModel subsumes many simpler (classical) models as special cases. For exam-
ple, if failure is hypothesized to occur when the largest principal stress (or strain) reaches a 
critical value, then the octahedral yield profile will be a triangle. If, on the other hand, fail-
ure is presumed when the equivalent shear stress reaches a critical value, independent of 
the Lode angle (like a Von Mises or Drucker-Prager criterion), then the octahedral yield 
profile is a circle, which can be modeled with the Gudehus option. As a rule, any classical 
failure criterion that is expressed directly in terms of the principal stresses will imply an 
appropriate J3TYPE option (and an appropriate value for the TXE/TXC ratio), but such 
criteria will also imply functional constraints on the meridional failure function  as well, 
which requires appropriate GeoModel inputs to mimic. Simplified GeoModel input sets, 
corresponding to these classical special-case idealized theories may be found at the end of 
Appendix B. 

Octahedral profile plots like the ones shown in Fig. 4.9 are most illuminating from a 
qualitative perspective. However, for parameterizing the GeoModel to quantitative labora-
tory data, simple plots of  vs.  are more useful. Fig. 4.10 shows the  functions for 
each of the J3TYPE options. In all cases, the lower bound on  is 1.0 at TXC. 
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Figure 4.10. Lode angle function (for various ψ strength ratios) plotted vs. the Lode angle varying from 
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octahedral yield profile and therefore the smaller the shear failure strength. The Gudehus and Willam-
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predicts lowest strength at an intermediate Lode angle somewhere between TXE and TXC. For example, 
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GeoModel theory
Advancing the solution (groundwork discussion)
So far, we have discussed how some microphysically based, but generally oversimpli-

fied theories can be used to predict theoretical shapes of yield or failure surfaces. The 
GeoModel implicitly captures microscale phenomena by using macroscale measurable 
variables in phenomenological manner. Direct use of idealized theories would require ini-
tializing and evolving microscale quantities (such as porosity) that are impractical to mea-
sure in the laboratory. Therefore, the algebraic structure of functions used in the 
GeoModel is guided by idealized microscale theories, but recast in terms of directly mea-
surable macroscopic variables. Simplified failure criteria help guide choices for interpola-
tion functions to be fitted to real observed data that likely reflect the specific phenomena 
considered in microscale idealizations and possibly some other “unknown” sources of 
inelastic flow. 

Microphysical theories are also used to guide how the GeoModel treats the partition-
ing of inelastic flow, once it begins. For example, most theories of inelastic flow (includ-
ing the GeoModel) presume that the total strain rate  can be partitioned additively as

,  (4.53)

where  represents the elastic (or recoverable) part of the strain rate and  denotes the 
“plastic” part of the strain rate. More correctly,  represents the inelastic strain rate, 
which reflects contributions from any and all sources of inelastic material response. Many 
classical theories presume that the direction of the plastic strain rate is parallel to the nor-
mal to the yield surface. In this case, since the normal to the yield surface can be obtained 
by the gradient of the yield function , the plastic part of the strain rate is pre-
sumed to be of the form

,  (4.54)

where  is a multiplier (called the consistency parameter) determined by demanding 
that the stress must remain on the yield surface during inelastic loading. The subscripts on 
the partial derivative merely indicate that the internal state variables are held constant. 
When the plastic strain rate direction is determined from the stress gradient of the yield 
function, as shown here, the model is said to be “associative” (to indicate that the plastic 
strain rate is associated with the yield function*). 

* For materials that exhibit elastic-plastic coupling, the terms “associativity” and “normality” can 
have distinct meanings, depending on whether the portion of the total strain rate attributable to rates 
of elastic moduli is absorbed into the elastic strain rate or the inelastic strain rate. When the cou-
pling terms (from rates of elastic moduli) are incorporated into the inelastic strain rate, normality 
and associativity are not interchangeable terms. If the coupling terms are incorporated into the elas-
tic strain rate, then associativity and normality are interchangeable, but at the cost that the elastic 
strain rate ceases to be an exact differential with respect to deformation.
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GeoModel theory
While the GeoModel does support associativity at user request, many researchers 
report that normality tends to over-predict the amount of volumetric plastic strain [43]. 
Therefore, non-normality is supported in the GeoModel as well. For non-normality the 
user specifies a flow function  such that* 

.  (4.55)

The plastic strain rate  includes both deviatoric and isotropic parts. If the flow potential 
depends on the first invariant , then applying Eq. (3.21), the volumetric plastic strain 
rate is

.  (4.56)

The plastic strain rate points normal to the isosurface .† If the flow function is 
associative, then the plastic potential function is identical to the yield function and the 
plastic strain rate will therefore point normal to the yield surface. Flow surface vertices 
reside at points where the flow potential is nondifferentiable, in which case the plastic 
strain rate points within a “cone of limiting normals” (Koiter fan) at the vertex and is 
determined through additionally considering the trial elastic stress rate associated with the 
total strain rate.

In the GeoModel, the functional form of  is the same as that of , but with different 
values for material constants. Specifically, the flow potential  can be made to differ from 
the yield function by assigning values to , , , and  that differ from their 
counterpart parameters  used to define the yield surface. For associativity, 
the potential function parameters should be given values identical to their counterparts in 
the yield function.

If continuing to apply elasticity theory would result in a predicted stress lying outside 
the yield surface, the governing equations are no longer elastic. At this point, the strain 
rate is decomposed into two parts, elastic plus plastic, as mentioned in Eq. (4.53). The 
stress rate is determined by applying elasticity. That is, 

,  (4.57)

* While considerable data does exist to suggest that the inelastic strain rate is not directed normal to 
the yield surface for some materials, such behavior is not well understood. The mathematical valid-
ity of assuming existence of a non-associated flow potential function has been called into question 
by Sandler and Pucik [40,37], who have demonstrated that such a model is inherently unstable, 
inadmissibly generating unbounded energy from quiescent states.

† Because the current stress might not reside on the isosurface , the GeoModel projects the 
stress to the nearest point on this isosurface. The need for such revisions is rarely recognized in 
plasticity programs (and casts doubt on the very notion flow potentials).
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GeoModel theory
where  denotes the isotropic tangent elastic stiffness tensor. In Eq. (4.57), our goal is 
to compute the stress rate. The current state is known, and therefore the instantaneous 
stress state and elastic moduli are known. In numerical implementations of constitutive 
models, the strain rate is known (it is provided by the host code after solution of the 
momentum equation). Thus, the only unknown in this equation is the plastic strain rate. 
Equation (4.55) allows us to compute the direction of the plastic strain rate from the 
known instantaneous stress state. Thus, after substitution of Eq. (4.55) into (4.57), the 
stress rate can be written

.  (4.58)

Everything on the right-hand-side of this equation is known except the value of the consis-
tency parameter, .

The consistency parameter is obtained by demanding that, not only must the stress be 
on the yield surface during plastic loading , it must also remain on the yield sur-
face throughout a plastic loading interval. Thus,  during plastic loading. The yield 
function  depends on the stress, but it also depends on the isotropic hardening internal 
state variable,  and (if applicable) on the kinematic hardening backstress state variable 
tensor . Thus, the assertion that  can be written via the chain rule as

.  (4.59)

The first term may be simplified through application of Eq. (3.20). The last two terms 
reflect the fact that the yield surface can evolve in shape and translate in stress space dur-
ing inelastic loading. In what follows, we will present “evolution equations” that govern 
how the state variables change in response to plastic flow. It will be argued that the evolu-
tion of each internal state variable should be proportional to the plastic strain rate. Equiva-
lently, these rates must be proportional to our unknown plastic consistency parameter . 
By substituting Eq. (4.58) and these soon-to-be-derived evolution equations for the inter-
nal state variables into Eq. (4.59) we will be able to solve Eq. (4.59) for the consistency 
parameter . Once the consistency parameter is known, it can be substituted into 
Eq. (4.58) to obtain the stress rate, which may then be integrated numerically to update the 
stress. With the consistency parameter  known, then rates of internal state variables 
(ISVs) become known through their evolution equations, allowing the ISVs themselves to 
be updated to the end of the timestep. Thus, the key to advancing the solution is to now 
derive in detail the internal state variable evolution equations.
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GeoModel theory
Evolution equations
Equation (4.59) may be used to determine the plastic consistency parameter  if hard-

ening evolution laws can be found for which the rate of each internal state variable (  and 
) is proportional to . Once the plastic consistency parameter is known, the evolution 

laws may be integrated through time to model the time varying hardening evolution of the 
yield surface. 

As indicated in Fig. 4.11, isotropic hardening (governed by  and related to void col-
lapse) causes a change in size of octahedral yield profiles, while kinematic hardening 
(governed by the backstress tensor ) produces a translation of all octahedral yield pro-
files. In general, both types of hardening can occur simultaneously.

In this section, we will derive explicit expressions for an isotropic hardening modulus 
 and a kinematic hardening tensor, , such that the evolution of the internal state vari-

ables may be written in the forms

 (4.60)

and

.  (4.61)

Later, substituting these expressions into Eq. (4.59) will lead to an expression for the plas-
tic consistency parameter . Once the consistency parameter is known, the above equa-
tions can be themselves integrated through time to update  and .

Evolution equation for the porosity-related internal state variable, κ.  
We begin this section with some background discussion about the meaning of the internal 
state variable , connecting it to some classical microphysical theories for purely porous 
(non-cracked) materials. The GeoModel’s re-interpretation of  for both porous and 
cracked materials will lead ultimately to an evolution law of the desired form,  
where  is called the isotropic hardening modulus.

λ·

κ
αij λ·

Figure 4.11. Hardening mechanisms.   At a given pressure, isotropic hardening entails an increase in 
size, kinematic hardening translates the yield surface, and compound hardening includes both mecha-
nisms. Softening corresponds to a yield surface contraction.
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GeoModel theory
In the GeoModel, void collapse commences at different pressures depending on the 
amount of shear stress present. The effect of shear stress on void collapse is characterized 
by the cap function illustrate in Fig. 4.5. Even though void collapse depends on shear 
stress, characterizing this effect requires only specification of two numbers  and  on 
the hydrostat [see Fig. 4.5]. In the GeoModel,  and  are presumed to be interrelated so 
that knowledge of  is sufficient to compute the value of . We will discuss this relation-
ship later. For now, we will focus on how the hydrostat intercept  should vary as porosity 
is reduced. 

If a material is capable of permanent volume change (i.e., if hydrostatic testing exhib-
its nonzero residual plastic volumetric strain  upon releasing the pressure), then the 
material likely contains voids. The hydrostat intercept  is proportional to the critical 
“elastic limit” pressure required to initiate irreversible void collapse. Therefore, the larger 
the porosity, the smaller  will be. As porosity is crushed out, the hydrostat intercept will 
move to the right so that increasing pressure will be required to continue crushing out the 
pores. Recognizing that  is an indirect measure of porosity changes, our first goal is to 
describe how the relationship between  and  can be inferred from hydrostatic test 
data. Then we will discuss the relationship between  and . With these two relationships 
in hand, we will ultimately assert that

,  (4.62)

from which substitution of Eq. (4.56), during hydrostatic compression or compaction 
dominated processes, will give the evolution equation in the desired form,

,    where     .  (4.63)

During dilatation-dominated processes, a different form is used for  (see Eq. 4.73).
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GeoModel theory
Relationship between  and  (the hydrostatic crush curve)
If the matrix material for a porous medium is plastically incompressible, then it can be 

shown [33] that the unloaded porosity  (i.e., the innate porosity at the rest state, not the 
slightly different porosity that reflects reversible elastic porosity reduction under loading) 
evolves under plastic loading according to 

,  (4.64)

where  is the void volume in a sample divided by the total volume of the sample (both 
volumes are those in the unloaded state), and  is the trace of the logarithmic plastic 
strain rate. To second order accuracy, Eq. (4.64) implies that the change in porosity is 
approximately equal to the plastic volumetric strain:

.  (4.65)

Considering only hydrostatic loading, early 
research on pore collapse focused on deriving and/or 
experimentally measuring so-called “crush curves” in 
which porosity in a material is plotted as a function of 
the applied pressure, as in Fig. 4.12. The GeoModel 
uses a similar curve, but inferred directly from hydro-
static stress-strain data so that porosity measurements 
are not necessary. By using the cap function, the Geo-
Model incorporates the results from this specialized 
hydrostatic experiment into the general theory in such 
a manner that pore collapse will commence at lower 
pressures in the presence of shear. Recall that the cap 
function, loosely speaking, represents material 
response in the absence of microcracks. Porous-only 
theories typically predict meridional cap profiles similar to the GeoModel cap function. 
For example, Gurson [20] reported the following upper-bound yield criterion (expressed 
in terms of Lode cylindrical coordinates):

,  (4.66)

where  is a constant (the yield stress of the matrix material) and  is the porosity. Being 
independent of the Lode angle, the Gurson yield function is a circle in the octahedral 
plane; Gurson’s meridional profile is compared with the GeoModel’s cap function in 
Fig. 4.13 for various porosities. As porosity goes to zero, the meridional profile 
approaches the pressure insensitive Von-Mises profile for the matrix material (in other 
words, in the absence of microcracks, the yield surface becomes a cylinder in stress space 
as the porosity goes to zero). This property holds only in the absence of microcracks. 
When microcracks are later included, the common envelope of yield surfaces will be the 
shear fracture curve .
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GeoModel theory
Under Gurson theory, the key material properties are microphysical (the yield stress  
for the matrix material and the porosity ), which are difficult to measure directly. To 
obtain analytical results, these theories must resort to over simplistic assumptions about 
the matrix material and pore morphology (e.g., Gurson theory presumes perfectly spheri-
cal voids arranged in a perfectly periodic array). Finally, microphysical theories are typi-
cally upper bounds, which are of limited use in applications since the tightness of the 
bound is unknown. 

Rather than directly using models like Gurson theory, the GeoModel is guided by the 
general trends they predict. Except at extremely high porosity, the Gurson model predicts 
that the cap surface will be essentially flat for a large range of pressures (z-coordinates). 
The loss in shear strength caused by pores is pronounced over only a small range of pres-
sures near the hydrostatic limit pressure. This region (beyond which the yield surface 
noticeably branches down to zero) is called the cap region. As seen in Figure 4.13, Gur-
son theory predicts the yield surface will evolve with porosity in such a manner that the 
cap essentially translates along the pressure (z) axis — the curvature of the cap region 
does not change significantly. The GeoModel supports these general trends by using a 
computationally simpler Rubin-Sandler cap function which is simply constant until a crit-
ical branch pressure is reached, after which the cap function drops to zero along an ellipse. 
The cap curve evolves by simple translation along the hydrostat without changes in cap 
curvature.

In the Gurson model, the current location of the translated cap is a function of the 
matrix yield stress and the porosity. Rather than using essentially unknowable matrix 
properties like these as internal state variables, the GeoModel recognizes that the appro-
priate location for the cap can be determined directly from hydrostatic compression test 
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Figure 4.13. The Gurson theory for porous yield surfaces compared with the GeoModel cap function 
at various values of the internal state variable κ. Qualitatively, the theories are similar.   When microc-
rack effects are included, the GeoModel profiles at various porosities form a pressure-dependent enve-
lope, as in Fig. 1.0(b) on page 1, instead of the horizontal Von-Mises-like envelope shown here.
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data and the branch point at which shear begins to affect pore collapse is presumed in the 
GeoModel to translate with the hydrostatic limit point. Thus, characterizing how the entire 
cap function evolves in response to plastic loading boils down to characterizing how the 
hydrostat intercept point (i.e., where the cap intersects the z-axis) evolves.

The GeoModel presumes that it is experimentally tractable to obtain pressure vs. volu-
metric strain data. If possible, the experiment should be run to the point of total pore col-
lapse (as in Fig. 3.1 on page 13). The elastic response of the material must be first 
determined by fitting the unloading curve to the nonlinear elasticity fitting function in 
Eq. (4.9). “Copies” of the elastic unloading function may be superimposed anywhere on 
the hydrostatic pressure vs. total strain data. As indicated in Fig. 4.14, the elastic unload-
ing curves can be used to determine a shift distance that must be applied at any given pres-
sure to remove the elastic part of the strain. After applying these shifts, the pressure vs. 
total strain plot is converted to a pressure vs. plastic strain plot, called an X-function. The 
X-function in Fig. 4.14 asymptotes to infinity when the plastic volume strain (i.e., the 
change in porosity) has reached its maximum value corresponding to all of the pores hav-
ing been crushed out. Rotating the X-curve and shifting the origin produces a classical 
crush curve in which porosity is plotted as a function of pressure. The GeoModel never 
explicitly refers to porosity. Instead, the plastic volumetric strain is employed as an indi-
rect measure of porosity changes.

Parameterizing the GeoModel so that it will adequately model the changes in the yield 
surface resulting from pore collapse requires converting hydrostatic pressure vs. volumet-
ric strain data as illustrated in Fig. 4.14 to obtain a classical porosity vs. pressure crush 
curve in which the porosity is plotted as a function of the pressure . Specialized parame-
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Figure 4.14. Relationship between (a) hydrostatic pressure vs. volumetric strain data, (b) the GeoModel X
function, and (c) a traditional porosity vs. pressure crush curve.   Test data are pressure vs. total volumetr
strain. Once the elastic unloading curves have been parameterized to the GeoModel fitting functions, the elast
strain at each pressure value may be subtracted from the total strain to generate the X-function. This function a
ymptotes to a limit value for the plastic strain when all voids have crushed out (and plastic volume changes ther
fore become negligible). The limit strain is approximately the initial porosity in the material. Rotating the X-pl

 and moving the origin as shown will produce a traditional porosity vs. pressure crush curve.90°
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GeoModel theory
terization software is available from the model developers to perform this conversion task 
and to fit the resulting crush curve to an exponential spline (see Appendix A). The plastic 
volume strain of a virgin (pre-deformation) material is zero. Therefore the user-specified 
parameter  is approximately equal to the initial porosity in the material. As pressure is 
increased from zero, the crush curve [Fig. 4.14(c)] shows that the porosity remains 
unchanged for a while until an elastic limit pressure  is reached. Continuing to apply 
increasing pressure beyond this elastic limit results in irreversible pore collapse and there-
fore reduction in porosity. The GeoModel allows fitting the post yielding part of the crush 
curve according to the crush curve spline formula,

,     where    .  (4.67)

Here, , , , and  are fitting constants. Referring to the porosity vs. pressure crush 
curve, these parameters are interpreted physically as follows:

•  equals , where  is the elastic limit pressure at the initial onset of pore 
collapse.

•  equals , where  is the initial slope of the porosity vs. pressure crush 
curve (see Fig. 4.14).

•  is an optional fitting parameter that may be used if a measured crush curve has an 
inflection point (i.e., initially concave down, transitioning to concave up at high 
pressures).

•  is the maximum achievable plastic volume strain, which corresponds 
approximately to the initial porosity in the material. Complete crushing out of all 
pores in the material is recognized in the hydrostatic pressure vs. total strain curve if 
the elastic release curve is tangent to the loading curve.

Equation (4.67) coincides with hydrostatic test data only during pore collapse. During the 
initial elastic loading, Eq. 4.67 describes the dashed line in Fig. 4.14, which is not required 
to coincide with the data. At pressures above the elastic limit ( ), Eq. 4.67 may be 
used to compute the plastic volumetric strain according to

,           where        (4.68)

This relationship may be differentiated to obtain the derivative  needed in 
Eq. (4.63). Now all we need to compute the isotropic hardening modulus  is the rela-
tionship between  and  so that we can substitute the derivative  into Eq. (4.63). 
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GeoModel theory
Relationship between    and        (cap curvature model)
For a purely porous material, Fig. 4.13

suggests that  is simply smaller than  by a 
fixed amount. Therefore, knowing  is suffi-
cient to determine . For a material that con-
tains both pores and microcracks, the 
relationship between the branch point  and 

 is similar, but influenced by the pressure 
sensitivity of the fracture function. Recall 
that the continuously differentiable meridi-
onal yield function  is constructed by multi-
plying a function  times a cap porosity 
function . Qualitatively, the fracture func-
tion  marks the onset of shear crack growth, 
with significant pressure strengthening being 
the result of friction at crack faces. This yield 
envelope function  might be lower than the 
ultimate shear limit envelope  if kinematic 
hardening is allowed. The cap porosity func-
tion  intersects the hydrostat ( -axis) at 

, marking the point at which pressure 
under hydrostatic loading would be suffi-
cient to induce pore collapse. Variation of the 
cap function with shear stress (along the 
ellipse) merely reflects an expectation that 
pore collapse will commence at a lower pres-
sure than the hydrostatic limit when shear 
assisted. 

Isotropic hardening in the GeoModel is 
cast in terms of the branch point located at 

 (or, equivalently, ) where the 
yield function  begins to deviate from the 
envelope function . The height of the 
branch point  in Fig. 4.15 is considerably 
lower than the peak height . 

Between the branch and the peak, mate-
rial response begins to be influenced by 
porosity, but is still shear crack (dilatation) 
dominated, and therefore plastic volume 
increases because of crack bulking. Between 
the peak and the hydrostatic limit point , 
porosity dominates the material response, 
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GeoModel theory
resulting in plastic volume compaction (from pore collapse). At the critical zero-slope 
point on the yield surface, material response is influenced equally by both cracks and 
pores so that so that no net volume change is apparent at the macroscale. 

Two-surface models [e.g., Ref. 41] typically construct and evolve the yield function by 
making direct reference to the ratio , which (referring to Fig. 4.15) is typically 
smaller than unity. The geomodel, however, constructs and evolves its yield function 
based on the ratio , which is typically larger than unity. This distinction between 
the two ratios is important to emphasize in publications and presentations to avoid confu-
sion between the GeoModel and conventional two-surface models.

Guided both by trends in observed data and by microphysical theories (e.g., Fig. 4.13), 
the GeoModel presumes that hardening proceeds such that the ratio between the distances 
a and b labeled in Fig. 4.15 remains always equal to a user-specified constant . The axis 
labels in Fig. 4.15 indicate that  and . Therefore the cap eccen-
tricity (also called the cap shape parameter)  is given by 

 or, solving for ,

.  (4.69)

When written without the overbar denoting the negative, this equation becomes

.  (4.70)

This expression is evaluated internally within the GeoModel coding to determine  as a 
function of the internal state variable . Differentiating both sides of this equation with 
respect to  gives

.  (4.71)

The κ evolution law
Substituting Eq. (4.71) into (4.63) gives

,  (4.72)

where the “isotropic hardening parameter”  is
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GeoModel theory
subject to the constraint, .* For 
numerical convenience, this constraint is 
replaced by , where  is 
the initial bulk modulus. The derivative 

 is found from crush-curve data fit-
ted to Eq. (4.68). 

The first term in the minimum function of 
Eq. (4.73) dominates when the stress state 
falls on the “compaction dominated” part of 
the yield surface, labeled in Fig. 4.16, while 
the second term dominates in the dilatation 
regime. The second term in the minimum 
function is guided by trends in observed data.

Even under monotonic loading, the rela-
tive position of the stress state on the yield surface can move from compaction to dilata-
tion regimes. Figure 8.6(a) (page 100) shows a triaxial compression load path (angled red 
arrow) that falls initially on the porosity (compaction) dominated portion of the yield sur-
face, which therefore results in plastic volume reduction and an isotropic expansion of the 
yield surface. Compaction from void collapse and dilatation from crack bulking are rela-
tively balanced in the vicinity of the critical point. After the stress passes through the crit-
ical point, the hardening modulus  in Eq. (4.73) transitions from its compaction-
dominated value to the dilatation-dominated value.

Evolution equation for the kinematic hardening backstress tensor. The 
GeoModel supports kinematic hardening, but is otherwise isotropic. Kinematic hardening 
entails using a shifted stress tensor  in the yield function instead of the actual 
stress. The deviatoric tensor internal state variable  is called the backstress, and it is 
computed using evolution equations described here. 
Recall that the yield criterion with kinematic hardening is given by

,  (4.74)

where  is the second invariant of the shifted stress,

.  (4.75)

The backstress tensor  is initialized to zero. Upon onset of yielding, the backstress 
evolves in proportion to the deviatoric part of the plastic strain rate:

* When using the overbar to denote the negative, Eq. (4.72) may be written  subject to 
. Thus, since  is never negative, this constraint ensures that  will never decrease. 

Physically, this is equivalent to demanding that porosity must always decrease. Increases in poros-
ity (i.e., softening) cannot be accommodated at the material constitutive level — to avoid mesh 
dependencies of the solution, softening must be handled at the field scale by the host code.
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Figure 4.16. Meridional plane in which the 
magnitude of the stress deviator “r” is plotted 
against  (which is proportional to the pres-
sure “p”)   The yield surface (solid) demarks 
the onset of inelastic flow. Under continued in-
elastic loading, the yield surface hardens (ex-
pands and/or translates) toward the shear limit 
surface (dashed).
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GeoModel theory
,  (4.76)

where .  (4.77)

Hence, comparing with Eq. (4.61), the kinematic hardening modulus tensor is given by

,  (4.78)

where  is a material constant and  is a scalar-valued decay function designed to 
limit the kinematic hardening such that  as  approaches the shear limit surface, 

. Since the yield function itself is defined in terms of , the maximum 
kinematic translation that can occur before reaching the limit surface equals the model off-
set parameter . The GeoModel uses the  function to “slow down” the rate of harden-
ing as the limit surface is approached so that  will equal zero upon reaching the limit 
surface. Specifically, the GeoModel uses the following decay function:

,         where       .  (4.79)

Kinematic hardening causes the octahedral profile to translate so that it no longer remains 
centered at the origin (See Fig. 4.11). Consequently, the yield surface will appear to have 
translated upward in the meridional plane that contains the backstress (see Fig. 4.17). The 
translation distance equals  and Eq. (4.79) prevents this distance from ever exceeding 
the user-specified offset limit . Of course, on the meridional plane perpendicular to the 
backstress, the meridional profile will not appear to have translated.
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GeoModel theory
Advancing the solution (final step, consistency parameter)
Recall from Eq. (4.59) that the consistency parameter  is determined from the con-

sistency condition, , applied during plastic loading intervals. Specifically,

.  (4.80)

Recall the key equations governing the rates of the field and internal state variables:

 (4.81a)

 (4.81b)

 (4.81c)

.  (4.81d)

With these, the consistency condition in Eq. (4.80) becomes

.  (4.82)

From which it follows that

,  (4.83)

where 

.  (4.84)

Formal equivalence with oblique return algorithms. With the plastic parame-
ter determined from Eq. (4.83), the stress rate may be written

,  (4.85)

where

(trial elastic stress rate)  (4.86)

 and .  (4.87)

In the GeoModel, the stress state is updated through direct integration of the GeoModel 
plasticity equations. However, for our upcoming discussion of rate dependence, it is 
important to understand that the update formula in Eq. (4.85) implies that the stress may 
be alternatively integrated through time by first computing a trial elastic stress at the 
end of the timestep which may be projected back to the yield surface (which itself has 
been updated to the end of the step) to determine the final stress. If the trial elastic stress 
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GeoModel theory
falls outside the yield surface, plastic flow must have occurred during at least part of the 
solution interval. Therefore, after evolving the internal state variables appropriately to 
update the yield surface to the end of the step, it can be shown that Eq. (4.85) implies that 
the stress at the end of the step may be found by obliquely projecting the trial elastic stress 
back onto the updated yield surface. Because  is not generally proportional to , the 
projection is oblique to the yield surface even if plastic normality is used. As explained in 
Chapter 5, the trial stress is projected only partly back to the yield surface whenever rate 
sensitivity is applied.

Quasistatic inelastic tangent stiffness tensor. For any constitutive model, the 
inelastic tangent stiffness  is a fourth-order tensor formally equal to the derivative of 
the stress rate with respect to the total strain rate. That is,

.  (4.88)

Therefore, comparing this equation with Eqs. (4.85) and (4.87), the GeoModel’s tangent 
stiffness is given by

quasistatic tangent modulus 

where , , and .  (4.89)

The tangent stiffness is major symmetric  only for associative models 
.* 

Stability issues. The last term in Eq. (4.89) is subtracted from the positive-definite 
elastic stiffness , so inelastic flow can potentially make the inelastic tangent stiffness 
tensor  non-invertible. In other words, the tangent stiffness tensor might eventually 
have a zero eigenvalue, marking the onset of softening (yield surface contraction). 
Whether or not the occurrence of a zero tangent stiffness results in stress-strain softening 
(i.e., a change from a positive to negative slope in a stress-strain plot) depends on the load-
ing direction. For example, if the strain rate is orthogonal to the null space of a non-invert-
ible tangent stiffness tensor, then no stress-strain softening will be observed and no change 
in type of the momentum equation will occur even if the yield surface is contracting. 

A standing wave (i.e., a non-moving discontinuity in displacement or velocity) is 
another form of material instability that has been extensively studied in the literature. The 
acoustic wave speeds (i.e., the speed at which inelastic perturbations can propagate 
through a material in the direction of a given unit vector ) are given by , 
where  denotes the eigenvalues of the second-order acoustic tensor,

 (4.90)

* Actually, equivalence of associativity and normality holds only in the absence of elastic-plastic 
coupling. When elastic moduli can change in response to plastic loading, an associative  
model will not exhibit normality and will not have a major-symmetric tangent stiffness [9].
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GeoModel theory
Thus, for the GeoModel, substituting Eq. (4.89) into (4.90),

,  (4.91)

where

 = the elastic acoustic tensor  (4.92)

and

     and     .  (4.93)

If the plastic tangent stiffness  is not major symmetric, then the acoustic tensor will 
not be symmetric. In this case, not only are standing waves  possible, but so are 
imaginary wave speeds (flutter instability). A complete spectral analysis of acoustic ten-
sors of the form in Eq. (4.91) is provided in Ref. [9] where every possible ordering of the 
inelastic wave speeds relative to elastic wave speeds is derived and where every possible 
acoustic eigenvector is presented. Physically, the eigenvector characterizes the velocity 
jump direction. If the eigenvector is parallel to the wave propagation direction , then the 
wave is a compression wave. If the eigenvector is perpendicular to , the wave is a shear 
wave. For elastic materials, these are the only two possible kinds of waves, but for inelas-
tic tangent tensors of the form (4.89), other modes are possible.

For rate dependent materials, the question of material stability must be examined anew 
because, as explained in the next section, the dynamic tangent stiffness tensor is generally 
stiffer than the quasistatic tangent stiffness.
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Rate Dependence
5. Rate Dependence

The governing equations discussed so far are rate independent, so they only apply for 
quasistatic loading. Under high strain rates, the elastic response of a material occurs 
almost instantaneously, but the physical mechanisms that give rise to observable inelastic-
ity can not proceed instantaneously. Materials have inherent “viscosity” or “internal resis-
tance” that retards the rate at which damage can accumulate. For example, cracks grow at 
a finite speed — they cannot change instantaneously from one size to another. If a stress 
level is high enough to induce crack growth, then the quasistatic solution for material 
damage will not be realized unless sufficient time elapses to permit the cracks to change 
length. Likewise, void collapse takes finite time. Simple inertia also contributes to rate 
dependence. During the time that cracks are growing towards the quasistatic solution, the 
stress will drop down toward the quasistatic solution. Until sufficient time has elapsed for 
the material to equilibrate, the stress state will lie outside the yield surface. If the applied 
strain is released any time during this damage accumulation period, then the total damage 
will be ultimately lower than it would have been under quasistatic loading through the 
same strain path.

Viscoplasticity model overview
The evolution of the yield function, and the very character of the inelastic deformation 

itself, can be dramatically altered by the rate at which loads are applied. In the limit of 
extraordinarily high load rates (as near the source of an explosion), material response is 
essentially elastic because insufficient time exists for plasticity to fully develop. At high 
strain rates, the equation of state (i.e., the pressure-volume part of the elasticity) plays the 
predominant role in material response. To allow for rate dependence, an overstress model 
is used. The user specifies a “relaxation” parameter governing the characteristic speed at 
which the material can respond inelastically. If the loads are applied over a time interval 
that is significantly smaller than the characteristic response time, then essentially no 
inelasticity will occur during that interval. If, on the other hand, the loads are applied 
slowly (as in quasistatic testing), then inelasticity will be evident. 

The GeoModel uses a generalized Duvaut-Lions [13] rate-sensitive formulation, illus-
trated qualitatively in Fig. 5.1. Consider a loading increment  during which the strain 
increment is prescribed to be . Two limiting solutions for the updated stress can be 
readily computed: (1) the low-rate (quasistatic) solution  which is found by solving the 
rate-independent GeoModel equations described previously, and (2) the high-rate solution 

 corresponding to insufficient time for any plastic damage to develop so that it is sim-
ply the trial elastic stress. As explained below and illustrated in Fig. 5.1, the Duvaut-Lions 
rate formulation is based on a viscoplastic differential equation, the solution of which 
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Rate Dependence
shows that the updated stress will be (approximately) a linear interpolation between the 
low-rate quasistatic plasticity solution  and the high-rate purely elastic solution . In 
other words, there exists a scalar  between 0 and 1 that depends on the strain rate such 
that

.  (5.1)
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Figure 5.1. Rate dependence.   For a given strain increment, two limiting solutions can be readily 
found. The “low rate” solution , which lies on the yield surface, is the solution to the rate independent 
GeoModel governing equations. The high rate solution  is simply the trial elastic stress. The actual up-
dated rate-dependent viscoplastic stress  falls between these two limiting case solutions so that 

. The inset graph shows how the scale factor  varies with the loading interval. If the 
loading interval is long relative to the material’s characteristic response time , then sufficient time exists 
to fully develop plastic response and the updated solution therefore coincides with the quasistatic solution 

. If the loading interval is considerably shorter than the material’s characteristic response time, then the 
solution will be the high-rate elastic solution.

σ
˜̃

L

σ
˜̃

H

σ
˜̃σ

˜̃
σ
˜̃

L η σ
˜̃

H σ
˜̃

L–( )+= η
τ

σ
˜̃

L

yield surface

σ
˜̃ n

low=σ
˜̃ n

L

quasistatic plasticity

pu
re

 e
la

st
ic

ity

σ
˜̃ n

η n (σ n
H –σ n

L )
~~ rate dependent

viscoplastic solution

σ
˜̃ n 1–

σ
˜̃ n+1

σ
˜̃ n 1+

H

σ
˜̃ n

high

η n+1 ( 
σ n+1H – σ n+1L )

~~

~~

σ
˜̃ n 1+

low =σ
˜̃ n 1+

L

yield surface pu
re

 e
la

st
ic

ity

rate dependent

viscoplastic solutionquasistatic plasticity
η

∆t
τ

-----

1

64



Rate Dependence
The update for internal state variables is structured similarly, but uses a somewhat differ-
ent weighting factor, as explained below. For both the stress and internal state variable 
updates, the interpolation factor  varies from 1 at high strain rates (when  is small) to 
0 at low strain rates (when  is large), as illustrated in the graph inset of Fig. 5.1, where 
the abscissa is normalized by a factor  called the material’s “characteristic” response 
time. At the end of this chapter, we will describe how the GeoModel assigns a value for 
the characteristic material response time . Incidentally, for simplicity, Fig. 5.1 shows a 
stationary yield surface. In general, the yield surface will evolve in size or translate 
according to the hardening rules described earlier.

A time interval  is deemed to be “long” if . A time interval is “short” if 
. Soon we solve the viscoplastic equations to prove that, if the initial stress is on the 

yield surface, then high-rate scale factor internal state variables (ISVs) is

.  (5.2)

This is also the rate factor for the stress at the onset of yielding when  and  coincide. 
At the end of a viscoplastic step, the final stress state will not lie on the yield surface. We 
will prove that, in this case, the scale factor is smaller than the value cited in Eq. (5.2). 
Consequently, the “attraction” that the dynamic stress has for the quasistatic solution 
increases somewhat as the stress moves farther from the yield surface.

Referring to Fig. 5.2, the  weighting factor is large when the time step is signifi-
cantly smaller than the characteristic time required for the material’s plasticity solution to 
develop. Effects of plasticity are apparent in the GeoModel only when the time interval is 
long or when the characteristic material response time is short so that  will be small. In 
this case, according to Eq. (5.1), the solution will be near the quasistatic (low-rate) solu-
tion . 

Figure 5.1 illustrates that the viscoplastic solution will follow a trajectory that is simi-
lar to the quasistatic solution except displaced from the yield surface. Consequently, 
experimental data for high-rate loading scenarios have the appearance of inducing a 
higher yield stress in the material. Unlike some plasticity models, the GeoModel does not
alter the material yield stress as a function of strain rate. Instead, the overstress model 
accomplishes the same effect in a much more physically justifiable manner.
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Rate Dependence
Viscoplasticity model derivation
In the context of viscoplasticity, an inviscid (rate-independent) solution  for the 

stress is presumed to exist. Likewise inviscid (rate-independent) solutions  are pre-
sumed available for the internal state variables, here denoted collectively by “q”. These 
limiting case solutions are merely the solutions of the rate-independent GeoModel equa-
tions described in earlier chapters. Viscous effects are incorporated by presuming that the 
strain rate is decomposed as the sum of an elastic part  plus a viscoplastic part :

.  (5.3)

The viscoplastic part of the strain rate includes both the usual plastic strain rate from the 
quasistatic (low-rate) solution as well as additional (retarding) contributions resulting 
from viscosity. The viscoplastic strain rate is governed by

.  (5.4)

The fourth-order tensor  is the elastic compliance (inverse of the stiffness),  is a 
material parameter called the relaxation time, and  is the rate-independent stress solu-
tion whose value at the beginning of a time increment  is tracked as an extra state vari-
able (called QSSIGXX, QSSIGYY, etc. in Appendix B).* At the end of the time interval, 

 ultimately has the value , which is found by integrating the rate-independent Geo-
Model equations from the earlier chapters. During viscoplastic loading, each internal state 
variable  is presumed to vary according to

.  (5.5)

Here  is the value of the internal state variable (  or ) throughout the time interval, 
initially being equal to  at the beginning of the step, and (through application of the 
rate-independent GeoModel) ultimately equalling the low rate solution  at the end of 
the step. Like the inviscid quasistatic stress, the inviscid quasistatic ISVs (QSEL, QSB-
SXX, etc.) must be tracked as distinct extra state variables. 

The stress rate is, as usual, given by the elastic stiffness acting on the elastic part of the 
strain rate: . Thus, using Eq. (5.3), the stress rate may be written

,             where    .  (5.6)

Here,  is the elastic trial stress rate, and therefore  is the time varying elastic 
trial stress that ultimately equals the high-rate solution  at the end of the step.

* The “low” or “inviscid” stresses must be tracked independently. They cannot be inferred by pro-
jecting the actual stress onto the yield surface. Attempting to do so causes undesirable results in 
rate-dependent load-unload cycles.
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Rate Dependence
Eq. (5.6) is a set of linear first-order differential equations which may be integrated 
exactly over a time step with the use of integrating factors [19] provided that  is 
known as a function of time throughout the time step. In principal, we would need to solve 
the rate independent equations analytically over the entire time step to integrate Eq. (5.6) 
exactly, but this is not tractable in practice. In what follows, we will describe how the time 
history of  can instead be well approximated over the step. First, let’s introduce a 
change of variables by defining

,  (5.7)

so that the governing equation for the stress rate may be written

.  (5.8)

This equation can be solved exactly if the time variation of  is known 
throughout the time step. Time variation of  is governed by known quasistatic rate 
equations. Consequently, the dynamic accuracy can be maximized by presuming that the 
rate of  is constant over the step so that  itself is approximated to vary linearly 
over the step. 

Recall that the final solution  can be presumed known at the end of the step 
because  is found by integrating the elasticity equations and  is found separately by 
integrating the inviscid quasistatic plasticity equations. Similarly, the difference 

 is known at the beginning of the step because  is  at the beginning of 
the step and  is retrieved from the saved quasistatic stress extra state variable array. 
The high-rate stress  is simply the elastic trial stress. Thus, it varies linearly through 
time from its initial to final value (with small higher-order nonlinearities if the strain rate 
and/or elastic moduli are not constant). The quasistatic stress rate  is an oblique pro-
jection of the trial stress rate onto the yield surface, so  also varies approximately lin-
early through time (with nonlinear effects from flow potential surface curvature being 
higher order). Thus, we may call on the mean value theorem to assert that

.  (5.9)

With this approximation, the ODE in Eq. (5.8) may be solved exactly. Since  equals 
 at the beginning of the step, the initial condition is that  when . Integrat-

ing the ODE, evaluating the result at the end of the step, and applying the definition of  
to obtain the updated solution for  eventually gives 

,  (5.10)

where

           and            .  (5.11)
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Rate Dependence
With the presence of the last term, the solution in Eq. (5.10) is not precisely of the form 
shown in Eq. (5.1) unless . As seen in timestep “n-1” in Fig. 5.1, the initial 
values for the “high” and “low” rate paths coincide only at the onset of plasticity. 
Eq. (5.10) can be put into the form of Eq. (5.1) if we approximate that  is par-
allel to . With this assumption, Eq. (5.1) becomes

,  (5.12)

where

 (5.13)

and

.  (5.14)

Fig. 5.2 shows how the weighting factor  var-
ies with the stress difference ratio  appearing in 
the last term of Eq. (5.13). For plastic loading,  
equals 0 only when the initial state is on the yield 
surface. Otherwise, beyond this onset of yielding 
moment,  increases, eventually asymptoting 
to 1 under steady strain rates. The lowering of the rate factor  caused by nonzero  
makes the dynamic stress more strongly attracted to the quasistatic solution as the distance 
between them increases.

For the rate dependent update of internal state variables, Eq. (5.5) can be integrated 
analytically if the time variation of  over the step is approximated by 

. The resulting solution for  is

,  (5.15)

where the high-rate weight factor  is the same as in Eq. (5.11). The weight factor  
for the internal state variables differs from the weight factor  for the stress because the 
two problems have different initial conditions. Recall that the material responds elastically 
at extremely high rates. Hence, because the internal state variables can evolve only when 
plasticity occurs, the high rate solution  for any internal state variables is simply its 
value at the beginning of the time increment.

Limiting case. If a strain rate is held constant for a long enough period then the differ-
ence between the dynamic stress  and the inviscid stress  will sometimes reach a 
steady-state value in the laboratory. In this case, the equations outlined in this chapter 
imply that this steady state stress difference is given by

 (5.16)
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Rate Dependence
where , , and  are defined in Eq. (4.89). 

In the very simplified context of non-hardening Von-Mises plasticity, this equation 
becomes

 (5.17)

where  is the shear modulus and  is a unit tensor in the direction of the stress deviator. 
For example, 

 for simple shear  (5.18)

 for uniaxial (axisymmetric) loading  (5.19)

Therefore, in the case of simple shear for non-hardening Von Mises plasticity, Eq. (5.17) 
implies that

      for simple shear  (5.20)

      for uniaxial (axisymmetric) loading  (5.21)

These simple analytical results can be used to trend-test the numerical implementation of 
rate sensitivity, as described in Fig. 5.3.
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Rate Dependence
Assigning a value to the characteristic material time
The GeoModel permits the user to control the value of the characteristic time through the 
use of up to seven positive-valued parameters,  through  which are employed in the 
code to assign a value of the characteristic time according to the following formulas:

,  (5.22)

where

,       and      ,  (5.23)

and         (McCauley brackets).  (5.24)

If a constant characteristic time  is desired, then set , and all other T’s to zero. 
Fig. 5.3 used a constant , as did the simple-shear rate-dependent simulation shown in 
Fig. 7.8(b) on page 92.

Suitability of the GeoModel’s overstress rate-dependence theory for predicting labora-
tory data is illustrated in Fig. 8.9 on page 103.
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Rate Dependence
Thermodynamics considerations
At present, the GeoModel’s equation of state is incorporated within the purely 

mechanical model — it contains no thermal terms (i.e., terms involving material proper-
ties such as the specific heat and Grüneisen parameter). Nonetheless, the GeoModel’s 
nonlinear elasticity model has been successfully fitted to Hugoniot shock data. How can 
this be? In thermodynamics, pressure is typically expressed as a function of two variables: 
the density  and a thermal variable (usually temperature or entropy). For example,

.  (5.25)

In thermodynamics, you can always use a purely mechanical equation of state if you 
restrict the class of allowable problems so that one or two of the thermal variables are 
inter-related in some known way. If, for example, you restrict attention to isothermal load-
ing, then the pressure will be expressible in the form , where the “material con-
stants” in the equation (such as the bulk modulus) must be set to their isothermal values. 
Likewise, if you can consider only adiabatic loading, then the pressure is again expressible 
as a mechanical function if the parameters such as the bulk modulus are set to their adia-
batic values. 

The GeoModel is parameterized at low pressure and low strain rates under isothermal 
conditions (room temperature), but at high pressures and high strain rates under adiabatic 
conditions. Thus, the non-linear fit for the bulk modulus may be regarded to transition 
from isothermal to adiabatic properties as pressure is increased. This implies a vague 
“domain of applicability” for the mechanical GeoModel. Specifically, the model may be 
used for problems where low pressure regions are also isothermal (and near room temper-
ature) and high pressure regions are adiabatic (high rate). Without information on the ther-
mal properties of the material, the validity of the mechanical GeoModel in other domains 
cannot be ascertained. In particular, using the model in high-rate/low-pressure applica-
tions (acoustics) or low-rate/high pressure problems (e.g., creep of underground salt bod-
ies) will possibly require re-parameterization.

A good method for gauging the degree to which the mechanical GeoModel can be 
applied in broad thermodynamic domains would be to compare isothermally measured 
elastic moduli (inferred by the slope of a stress strain curve) with acoustically measured 
moduli, which are the low-pressure isentropic elastic constants. The difference between 
the isothermal and isentropic bulk modulus (at a given pressure) is proportional to the 
square of the thermal expansion coefficient divided by the specific heat. Thus, if no differ-
ences are observed between the isothermal and isentropic moduli at a given pressure, the 
domain of applicability of the purely mechanical model is likely broad. 

ρ
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GeoModel Numerical Solution scheme
6. GeoModel Numerical Solution scheme
Aside from kinematic hardening, the GeoModel is isotropic and therefore the yield 

function depends only on principal stresses. An eigenvalue analysis is avoided by casting 
the yield function in terms of stress invariants. The principal stress directions (eigenvec-
tors) are not needed to evaluate the yield function. For any isotropic elasticity model, how-
ever, evolution of plastic response must allow for rotation of principal stress directions 
caused by the elastic portion of the loading. Thus, the governing equations must be cast in 
incremental tensorial form, requiring all six independent components of symmetric ten-
sors to be passed to the model. Careful numerical integration schemes [6] are required to 
ensure accuracy and convergence.

This chapter begins with a description of how the GeoModel is to be used within a 
host (finite-element) code, followed by a discussion of the influence of material softening 
on field-scale stability (i.e., stability of the spatial finite-element solution, not stability of 
the GeoModel’s internal time integration algorithm). Next, GeoModel installation instruc-
tions are provided that describe the public* subroutines and memory requirements. Fol-
lowing a summary of plotable GeoModel output, the GeoModel’s time integration 
algorithm is briefly summarized.

Role of the GeoModel within a finite-element program
The GeoModel is designed for use in host codes (typically finite-element programs) 

that solve the momentum balance PDE,

,  (6.1)

where  is the spatial Cauchy stress tensor (denoted  in Eq. 3.39),  is the spa-
tial position vector,  is the body force per unit volume,  is the mass density, and  is 
the material acceleration that is related to the spatial velocity field  by material time 
derivative

 (6.2)

* i.e., called directly from the host code.
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GeoModel Numerical Solution scheme
Here,  is the time-zero reference position vector, which serves to identify Lagrangean 
material points. The spatial position vector  is related to the reference position  
through the deformation mapping function, such that the deformation gradient tensor is

 (6.3)

The stress and velocity fields (as well as displacement or velocity boundary conditions) 

are known at the beginning of each time step, so that application of Eq. (6.1) permits eval-

uation of the acceleration field. In most host codes, the updated position of a material par-

ticle is computed to second-order accuracy with respect to the time step  through 

application of

 (6.4)

or

.  (6.5)

Equivalently,

,  (6.6)

where    .  (6.7)

To date, all installations of the GeoModel have approximated the unrotated strain rate by 

the unrotated symmetric part of the velocity gradient defined in Eq. (4.3), evaluated at the 

half-step by using the velocity field in Eq. (6.7). The GeoModel integrates the unrotated 

strain rate to predict the unrotated stress at the end of the step, which must then be rotated 

into the spatial configuration by the host code. As mentioned on page 20 (and clarified 

later in this chapter), optimizing the accuracy of the spatial solution for problems involv-

ing massive material rotation requires the host code to apply its un/rotation operations 

using polar rotation tensors that are consistent with the part of the time step (beginning, 

half, or end) at which un/rotation operations are required. 

Of course, once the GeoModel and any other constitutive models in the problem have 

been applied to determine stresses at the end of a time step, Eq. (6.1) may be integrated 

again to update the acceleration field, thus launching a new timestep cycle.
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GeoModel Numerical Solution scheme
Spatial stability (mesh dependence/loss of strong ellipticity)
As rock deforms inelastically, the initial yield surface (lower curve in Fig. 4.16) 

evolves toward — and is not permitted to evolve beyond — the limit surface (upper curve 
in Fig. 4.16). If the stress reaches the limit surface, the rock has, in a loose sense, failed 
catastrophically. More correctly, the GeoModel has reached the limit of its applicability 
because large scale cracking and subsequent loss in strength cannot be modeled locally at 
the constitutive level. Material softening generally produces a change in type of the 
momentum equation, requiring intervention from the host code to change its solution 
scheme appropriately (for further details, see page 61). In the GeoModel, the state variable 
“CRACK” is a flag equaling 1.00 whenever a principal stress (or ) cut-off has been 
applied or 2.00 when the stress has reached the limit surface and can harden no further; 
otherwise “CRACK” equals 0.0. In either case, a positive value of “CRACK” marks the 
onset of softening. 

Because the GeoModel comes equipped with its own flags for failure, this model 
should not be used with other fracture models such as a maximum principal stress crite-
rion. Instead, the “CRACK” flag should be queried by the host code to determine when it is 
appropriate to add void (when pressure is tensile) or to apply discontinuous shear dis-
placement element shape functions (when pressure is compressive) or to apply any other 
appropriate response* to material softening that will ensure localization response that con-
verges as the spatial mesh size is reduced. 

If the host code fails to activate any special response when the “CRACK” flag becomes 
nonzero, the GeoModel will continue to run, but its predictions are suspect. Without a 
meaningful host-code response to failure, the geomodel will handle the inelastic response 
at the limit state in a manner similar to non-hardening plasticity (i.e., rather than properly 
softening down away from the limit state, the GeoModel will force the stress to dwell at 
the limit state). To summarize, the GeoModel is intended to model only the portion of 
material response that is appropriate to compute at the local constitutive level. The Geo-
Model sends flags back to the host code at the onset of softening (a non-local phenome-
non). The host code is responsible for responding appropriately to these flags by initiating 
material softening.

* We are investigating a field-scale softening strategy that introduces a length scale based on Weibull 
perturbations of the material strength field, which is especially appealing because (unlike “element 
death” and cohesive zone models) it can be easily justified physically. Specifically, softening 
results from sub-grid-scale flaw clustering, which can be shown to have a Weibull (or nearly 
Weibull) distribution and can be parameterized via standard laboratory-scale experiments. Prelimi-
nary investigations [4] have shown that Weibull-like softening strategies lead to very realistic frag-
ment patterns and are mesh-independent.

I1
74



GeoModel Numerical Solution scheme
GeoModel files, subroutines, memory requirements, and 
model installation requirements.

This section is a software requirements specification that must be followed by anyone 
who installs the GeoModel into a host code.*  The GeoModel is designed to be imple-
mented into multiple host codes without any revision of the source code. As described 
below, the model has three public† subroutines (GEOCHK, GEORXV, and ISOTROPIC_
GEOMATERIAL_CALC). To support portability, the GeoModel conforms to Sandia’s 
Model Interface Guidelines (MIG) [10]. Therefore, the model presumes that calculations 
entail three distinct phases, the first two of which are performed at start-up while the last 
one is applied for every element at every timestep:

1. User input.    The GeoModel requires the host code to acquire user input values and save 
them into a single array using the keywords and ordering listed in Appendix B. This property 
array must be passed to the subroutine GEOCHK for “domain certification” (i.e., verifying that 
input values fall within allowable ranges, as explained on page 81). Additionally, the routine 
GEOCHK sets defaults for unspecified user inputs.

2. Storage.   To be portable, the GeoModel does not actually allocate storage for internal state 
variables (ISVs) — this is the responsibility of the host because data lay-out varies from code 
to code. The GeoModel provides a list of storage requirements by requiring the host code to 
call subroutine GEORXV. This routine returns physical dimensions, initial values, plot 
keywords, and advection requirements for each internal state variable. To use this routine, the 
host code loops over the lists returned by GEORXV to then allocate the storage, define plot 
options, and initialize the ISV fields.

3. Execution.   Every cycle, ISOTROPIC_GEOMATERIAL_CALC must be called to update 
the stress to the end of the step. Detailed descriptions of the input-output arguments are 
provided below.

The GeoModel must, upon occasion, relay messages to the user or terminate the calcula-
tion. Log message protocols and bombing procedures vary among host codes. For porta-
bility, the GeoModel follows MIG guidelines by calling subroutines LOGMES, FATERR, 
or BOMBED whenever it needs to relay messages to the user, log fatal errors, or terminate 
calculations, respectively. These routines are not part of the GeoModel source code. 
Because these actions require host-code responses that vary from code to code, these rou-
tines must be written and maintained by the host-code architects. Likewise, a routine 
called TOKENS (used only in the extra variable request routine) is expected to pre-exist in 
the host code. Any host code that already supports MIG models will already have these 
MIG-utilities in their repository. Host code architects of non-MIG-compliant codes may 
request sample MIG-utilities that they may customize to suit their own code’s protocols 
for information passing and code termination.

* Any deviation from these model installation instructions (as well as any modification of the Geo-
Model source code itself) may result in loss of technical support. Model installers who believe that a 
deviation from these instructions is warranted are encouraged to contact the GeoModel developers.

† i.e., routines that are called directly from the host code. All other routines in the GeoModel are “pri-
vate” and should not be called by the host. To serve codes that re-mesh, one additional public rou-
tine, isotropic_geomaterial_state, is available that will repair advection errors.
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The GeoModel source code is available in both FORTRAN 77 and 90. To date, large-
scale production codes have used the F77 version to best ensure portability, so those rou-
tines will be described here. The F90 routines, which are not significantly different, are 
generated from the F77 master files to ensure consistency.

Arguments passed to and from the GeoModel driver routine
The following list describes variables passed between the host code and the Geo-

Model’s driver routine (isotropic_geomaterial_calc):

INPUT: 
• NBLK: The number of cells or finite elements to be processed. Parallel codes send 

only one cell at a time (NBLK=1).
• NINSV: The number of internal state variables for the GeoModel.
• DT: The time step
• PROP: the user-input array, filled with real numbers, as summarized at the top of the 

nomenclature table in Appendix B and also summarized within the source code 
prolog itself.

• SIG: The unrotated Cauchy stress tensor at time n. The six independent components 
of the stress must be passed in the ordering . Within the 
FORTRAN, this array is dimensioned “SIG(6, NBLK)” so that the stress components 
for any given finite element are in six contiguous memory locations.

• D: The unrotated strain rate tensor, preferably evaluated at time n+1/2 because the 
GeoModel treats the strain rate tensor as constant over the entire interval. Most codes 
approximate the strain rate tensor as the unrotated symmetric part of the velocity 
gradient (see Eq. 4.3). Component ordering and contiguous storage are the same as 
for stress.

• SV: the internal state variable array containing reals, as described in the nomenclature 
table in Appendix B.

OUTPUT: 
• SIG: The unrotated stress tensor at time n+1. The component ordering is the same as 

described above.
• SV: The internal state variable array (updated to time n+1)
• USM: Uniaxial strain (constrained) elastic modulus equal to . The host 

code may use the USM output to compute an upper bound on the wave speed ( , 
where  is mass density) when setting the timestep.

These arguments require unrotation of spatial stress at time n, unrotation of the strain rate 
at time n+1/2, and rotation of the updated stress back to the spatial frame at time n+1. For 
problems involving significant material rotation, this requires using three different polar 
rotation tensors [14]. For moderate rotation problems, it might be acceptable to use the 
rotation tensor evaluated at time n+1/2 for all three operations, but the accuracy conse-
quences of this simplified approach have not been carefully examined in the computa-
tional mechanics literature.
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PLOTABLE OUTPUT
In addition to the stress, any variable in the SV state variable array is available for plot-

ting. The plot keywords (and ordering of variables in the SV array) are listed in Nomencla-
ture Appendix B. 

As mentioned earlier, the “CRACK” flag may be plotted to visualize softening regions. 
The “INDEX” flag may be plotted to locate regions that are now or have ever deformed 
inelastically (even if elastic at the given instant). To visualize regions that are currently
deforming inelastically, the “SHEAR” variable should be plotted.

The “SHEAR” variable is an informational output, equal to zero during elastic cycles 
and equaling a measure of normality of the trial elastic stress rate during plastic intervals. 
Specifically, as illustrated in Fig. 6.1, “SHEAR” ranges from zero when the trial stress rate 
is tangent to the yield surface to unity when it is normal to the yield surface; an intermedi-
ate value of “SHEAR” indicates oblique plastic loading relative to the yield surface. While 
“SHEAR” quantifies the plastic loading direction relative to the yield surface, the internal 
state variable “DCSP”, which is the plastic consistency parameter , may be plotted as a 
measure of the magnitude or intensity of plastic loading.

The “EQDOT” variable may be plotted to gain an overall sense of intensity of the cur-
rent strain rate. Small values of “EQDOT” correspond to relatively quiescent regions. Plot-
ting “EQPS” will show equivalent plastic shear strain, while “EQPV” gives plastic volume 
strain (and is roughly equal to the porosity change from inelastic void collapse). 

The stress invariant “I1” is three times the negative of pressure. “ROOTJ2” may be 
regarded as a scalar measure of effective shear stress and is proportional to the radial coor-
dinate of the stress in the octahedral plane. The Lode angle, “LODE”, quantifies the angu-
lar location of the stress in the octahedral plane, and it varies from 30 for triaxial 
compression to –30 for triaxial extension (0 for simple or pure shear). If kinematic harden-
ing is enabled, “BACKRN” quantifies the distance that the origin of the octahedral profile 
has shifted in stress space.

The complete list of other (less useful) plotable output is in Appendix B.
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Figure 6.1. Meaning of the “SHEAR” output variable.   This calculation uses a Von Mises yield sur-
face. The strain rate remains in triaxial extension for half of the calculation, which is why the Lode angle 
(a) is initially constant at . During this interval, the stress reaches the yield surface and continues to 
push directly against it, which is why SHEAR (c) jumps to and holds at 1.0. Halfway through the problem, 
the strain rate direction is changed in stress space [as indicated by arrows in (b)] to move the stress toward 
triaxial compression. At the beginning of this transition, SHEAR first jumps to 0.5 where the normal and 
tangential components are equal, and moves back toward 1.0 as the tangential component decays.
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GeoModel algorithm
The GeoModel presumes that the strain rate is constant throughout the entire step, and 

the stress is integrated as follows:

Rate independent (inviscid) part of the viscoplasticity equations. 
STEP 1. To guard against unpredictable host-code advection errors (or similar corruption of the 

updated state from the last time step), apply a return algorithm to ensure the initial 
stress is on or inside the yield surface.

STEP 2. Compute the nonlinear elastic tangent moduli appropriate to the stress at time n.
STEP 3. Apply Hooke’s law in rate form to obtain the elastic stress rate at time n.
STEP 4. Integrate the elastic stress rate using first-order differencing to obtain an estimate for 

the trial elastic stress at the end of the step.
STEP 5. Evaluate the yield function at the trial elastic stress. If the yield function evaluates to a 

negative number, the trial elastic stress is accepted as the final updated stress, and the 
inviscid algorithm returns (i.e., go to STEP 16). Otherwise, continue.

STEP 6. To reach this step, the trial elastic stress state was found to lie outside the yield surface. 
At this point, the time step is divided into an internally determined number of 
subcycles. All subsequent steps described below this point apply to the smaller time 
steps associated with subcycles.

STEP 7. Evaluate the gradients of the yield function for eventual use in Eq. (4.83).
STEP 8. Evaluate the flow potential gradients for eventual use in Eqs. (4.87) and (4.85)

STEP 9. Evaluate the isotropic hardening coefficient  in Eq. (4.72).

STEP 10. Evaluate the  function in Eq. (4.76).
STEP 11. Apply Eq. (4.83) to obtain the consistency parameter.
STEP 12. Use forward differencing (within the subcycle) to integrate Eqs. (4.72) and (4.76), 

thereby updating the internal state variables,  and . Similarly integrate Eq. (4.85) 
to advance the stress to the end of the subcycle.

STEP 13. The above steps will have directly integrated the governing equations through the end 
of the subcycle, so the updated stress will be in principle already on the yield surface. 
However, guard against slight round-off and integration errors by applying an iterative 
return correction to place the stress exactly on the yield surface.

STEP 14. Increment the subcycle counter, and save the partially updated inviscid internal state 
variables.

STEP 15. If subcycles remain to be evaluated, go to STEP 7. Otherwise, continue to STEP 16.

Viscous part of the viscoplasticity equations. 
STEP 16. The previous set of steps govern computation of the equilibrium state. Now apply 

Eq. (5.22) to compute the characteristic material response time.
STEP 17. Using the trial elastic stress corresponding to an update to the end of the time step, 

apply Eq. (5.10) to compute the dynamic stress. Apply Eq. (5.15) to similarly compute 
the dynamic values of internal state variables to account for rate sensitivity.

STEP 18. Save the values of the internal state variables into the state variable array. 
STEP 19. STOP.
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7. Software “confidence building” activities

This chapter describes progress towards Software Quality Assurance (SQA), which 
encompasses a broad range of activities including code maintenance, documentation, and 
(most importantly) code verification. “Code verification” is defined by the IEEE [22] as 
“formal proof of program correctness” in the sense that the governing equations are 
numerically solved correctly within a tolerable degree of accuracy. Model validation* will 
not be discussed until Chapter 9.

We make no claims at this point that the GeoModel software has been exhaustively 
verified. In other words, we cannot state with absolute certainty that the governing equa-
tions presented in this report are in fact solved correctly.  One might challenge the Verifi-
cation and Validation (V&V) community to prove that “formal proof of program 
correctness” is even possible. Realistically, the confidence one can place in the veracity of 
any model prediction can be based only on the extent to which documented evidence sug-
gests that the equations are solved correctly. It seems acceptable, therefore, to speak of 
varying degrees of progress towards verification†, or, more generally, varying degrees of 
SQA.  In this sense, the GeoModel has undergone a higher level of SQA than is normally 
applied to modern material constitutive models of comparable complexity.‡  Even though 
we claim that the GeoModel’s verification and SQA status is above average, we do not
assert that such activities have progressed to the point where we consider the job “fin-
ished.” Here in this chapter, we aim only to build confidence in the GeoModel by summa-
rizing some of the SQA activities that have been applied to the GeoModel to date (a 
comprehensive detailed discourse would fall well outside the scope of this report).

Once a constitutive model is installed within a host code, it becomes only a single 
component of a much larger and different model (the finite-element code). Constitutive 
SQA should include ensuring that the model can be installed and run in a variety of host 
codes, but verification of the installation is primarily a host code (not constitutive) respon-
sibility. Constitutive SQA in the context of larger-scale model integration is limited to pro-

* Whereas “Verification” seeks to confirm that the equations are solved correctly without questioning 
their appropriateness, “validation” compares model predictions against experimental data to deter-
mine whether or not the equations themselves are indeed suitable for the application.

† Suppose, for example, that one constitutive model has been verified for both uniaxial strain and 
simple shear, whereas another one has been tested only in uniaxial strain. If these are the only tests, 
neither model is “well verified,” but the first one is certainly better verified.

‡ From a practical (rather than philosophical) standpoint, the complexity of a model must be consid-
ered when speaking about how well a model has been validated. With a given level of financial and 
computational resources, solids models cannot be tested to the same level of certainty as fluids 
models. Conclusively demonstrating only first-order accuracy of an anisotropic solid constitutive 
model would require more than twenty times the effort needed to verify first-order accuracy of a 
simple fluids model (this follows because a general anisotropic stiffness tensor has 21 independent 
components, and therefore 21 independent strain paths would be required to conclusively verify 
accuracy; moreover comprehensive testing for solids models requires coordinate invariance tests 
that are not needed for scalar fluids models). 
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viding adequate model installation instructions (including operational constraints), 
delivering correct solutions to the constitutive governing equations, and ensuring that the 
model will, wherever feasible, “trap” invalid calling arguments (much as a compiler 
“traps” IEEE errors such as division by zero).

Numerical schemes for solving field PDEs (such as Navier-Stokes equation or Max-
well’s electromagnetism equations) have received considerable attention in the V&V liter-
ature, while verification of constitutive models has been relatively ignored. Constitutive 
models are sub-components within field-scale calculations. As such, a partitioning of 
responsibility for SQA is needed. (As an analogy, note that the quality assurance responsi-
bilities for a turn-signal manufacturer must be different from those of an automobile man-
ufacturer.) Constitutive verification aims to build confidence that the model will return 
correct solutions to the governing equations, presuming that the host code sends inputs 
falling within the admissible domain for the model. SQA may additionally include some 
checking of the inputs themselves, as long as doing so does not compromise efficiency. 
When a host code sends inadmissible inputs (such as corrupted strain rates caused by 
mesh entanglement, advection, or artificial viscosity errors), then correcting such errors is 
not the responsibility of a constitutive modeler unless it can be proved by the host code 
developers that such errors originated from constitutive model output errors. 

Similarly, because the GeoModel is a local constitutive model (i.e., because it does not 
solve space-time PDEs), demonstrating convergence with respect to the spatial mesh is 
not a GeoModel verification responsibility. It is well known that mesh dependence can 
occur when local constitutive models permit material softening. Therefore, we regard sup-
pression of softening as an implicit software requirement specification because our cus-
tomers (finite-element code teams) do not have the code infrastructure that is needed to 
properly handle the change in type of their governing PDEs that occurs upon softening. 
Until such enhancements are made at the host code (not constitutive) level, the GeoModel 
predicts only the onset of catastrophic failure, not its subsequent evolution into macroscale 
fragments and fractures.
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In the lexicon of Ref. [25], “static” SQA testing is a prerequisite to the verification 
process that encompasses tests that are performed without running the code. To date, the 
GeoModel has undergone the following static SQA:

• Independent* line-by-line review of the source code. The source code was 
aggressively inspected to locate and remove possibilities for IEEE errors (e.g. trying to 
take the ArcSin of a number larger than unity†, dividing by zero, etc.). Another goal was 
to confirm that the equations being solved in the code were indeed the equations 
documented in this report.

• Model domain certification (preventing “Garbage In ⇒ Garbage Out”). No function 
or set of equations is well posed without a domain of applicability. The domain for the 
GeoModel includes constraints on run-time subroutine arguments (e.g., the backstress 
must be deviatoric) as well as constraints on the input parameters (e.g., the bulk modulus 
must be positive). Except where computational efficiency would be degraded, SQA 
includes appraising quality of both user input and run-time arguments sent from the host 
code. A new routine (geochk) was recently added to the GeoModel that terminates 
calculations if the user-input falls outside allowable ranges. Run-time testing of this 
routine is discussed in the next section. Direct run-time testing of time varying 
subroutine arguments is computationally inefficient, so the GeoModel’s domain 
certification for variable calling arguments relies primarily on our model installation 
instructions (page 75), which serve as software requirement specifications that must be 
obeyed by the host code developers. 

• Portability and version control. The GeoModel has been designed such that it can be 
implemented in multiple host codes without altering the source code, thus allowing the 
GeoModel developers to maintain a single master version. A host code owner who 
faithfully obeys the model installation instructions on page 75 may update the 
GeoModel by simply replacing three FORTRAN files (posted on WebFileShare under 
keyword “GeoModel”) with the latest GeoModel release and then recompiling. Each 
GeoModel release is identified by a six digit code‡ that prints to the screen at run time. 
The GeoModel has been compiled on multiple platforms (Sun, Dell, and HP 
workstations or clusters running Linux and/or Windows) in multiple host codes (Alegra, 
Presto, Pronto, JAS3D, and two independent drivers) using multiple commercial 
compilers (gnu, pgf77, pgf90, and Compaq visual FORTRAN). The source code compiles 
without warnings when using stringent SQA options (such as -Wall -O3 in the gnu 
compiler).

• Model documentation. This report is the first publication that describes the numerical 
algorithm, provides input definitions, and gives model installation instructions that 
describe how SQA responsibilities are partitioned between the model and the host code. 

• Technical support.   Two stand-alone single-cell codes that exercise the GeoModel 
under prescribed strain and stress paths are available to assist host (finite-element) code 
owners verify their GeoModel installations. The GeoModel includes a “problem-
resolution” feature that generates a debugging file (geo.barf) and terminates calculations 
whenever unacceptable solution quality is detected. The debugging file may be emailed 

* Here, “independent” (which is not synonymous with “unbiased”) means that the source code has 
been inspected by an individual who has not written the code. GeoModel code inspection was first 
performed by Brannon (the second author of this report) upon joining this modeling effort at the 
beginning of fiscal year 2003-04. Subsequent new code revisions and enhancements have been 
reviewed by the member of the Fossum-Brannon team who did not write the new code.

† This can happen because of slight round-off errors, as in ASIN(1.0000001).
‡ The code is simply the release date in the form “yymmdd”.    

For example, “GeoModel version 040526” was released in 2004 on May 26.
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to the GeoModel team, who can import it into their driver to resolve the problem quickly.

So-called “dynamic” SQA refers to tests performed by actually running GeoModel. Some 
of the dynamic SQA activities to date are summarized here. A detailed documentation of 
all GeoModel SQA would require a second report itself, so the following list should be 
regarded as simply an overview. A small number specific examples will be given later.

• Model domain certification: The “geochk” feature for checking quality of user inputs 
was tested by confirming that the GeoModel would abort when intentionally sent invalid 
inputs. As explained below, the “geobarf” problem-resolution feature can often 
indirectly trap invalid forcing functions (caused, for example, by mesh entanglement). 
However, the responsibility for sending valid forcing functions to the GeoModel 
remains the onus of the host code, not the GeoModel.

• Run-time monitoring of the solution quality: The problem-resolution (geo.barf) 
feature has been verified to (1) detect “Garbage Out” predictions such as negative plastic 
work, (2) terminate calculations, and (3) write a debugging file that can be emailed to 
model developers to determine whether the problem was caused by bad user input, bad 
arguments passed from the host code, or a bug in the internal coding.

• Driver regression testing: Two stand-alone drivers are available for exercising the 
GeoModel in a homogenous deformation field.*   Considerable dynamic testing was 
performed using our research (non-production) model driver that allows visualizing (and 
algebraically processing) the output within Mathematica [48]. The other driver [36], 
which runs either from a command line or from an Excel front-end (see Fig.7.1), is now 
also deployed in the WISDM materials information database [21], allowing the 
predictions of the GeoModel to be compared directly against experimental calibration 
data. These drivers have been used to assemble a suite of regression tests (hydrostatic 
loading, two types of shear loading, uniaxial strain, uniaxial stress, biaxial plane stress, 
and numerous mixed load-unload problems using a variety of input parameters), several 
of which are simple enough to admit analytical solutions for verification purposes. The 
driver regression problems (15 problems to date) are all re-run and inspected for 
undesirable changes whenever any change is made to the GeoModel.

• Trend testing:  Engineering judgement was used to ensure that solutions vary as 
expected when parameters change. For example, Fig. 6.1 depicted a simple trend test in 
which analytical (exact) arguments could be used to prove that the “SHEAR” should 
equal 1.0 at the onset of yielding and should dwell at 1.0 until the loading direction 
changes, after which it should drop instantaneously to 0.5 and then asymptote to 1.0. 
Similarly, Figs. 5.3 and Figure 7.8b confirmed that increasing the GeoModel’s 
characteristic response time (see Eq. 5.22) would indeed produce the analytically 
predicted increase in the apparent strength of the material. These tests were quite 
valuable because they allowed correction of a serious bug in an earlier version of the 
GeoModel where the response trend upon load reversal was clearly flawed. Trend and 
robustness testing also demands that the GeoModel must predict qualitatively
reasonable trends when subjected to deformations that exceed what is expected in 
applications (e.g., massively large elongations or pressures). For example, one problem 
in our driver regression suite verifies that load/unload curves do indeed asymptote 
toward each other under hydrostatic compression as sketched in Fig. 3.1 and verified in 
Fig. 7.1. Many other trend tests such as these have been conducted, but (for lack of 
space) will not be described in detail in this report.

* Stand-alone testing obviates many constraints and sources of non-constitutive errors in production 
finite-element simulations (artificial viscosity, hour-glassing, time-step control, boundary-condi-
tion errors, code compilation and run-time overhead, etc.). 
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Figure 7.1. Screen shot of the MS Excel interface for the GeoModel material-model driver (MMD). 
  This tool serves as a reliable platform for exercising the GeoModel under homogeneous deformations in 

a simplified host code architecture that is free from solution corruption caused by unneeded finite-element 
code features such as artificial viscosity, wave motion, contact algorithms, etc.

stress or strain
(or mixed)
loading

lem description:

Fossum Geomodel

Salem Limestone

Hydrostatic Compression (Stress-Driven)

***************************************************************
to Fortran MMD executable:

C:\home\data\mdrive\rb\mmd0402c\Debug\mmd0402c.exe

***************************************************************
ial model:

Index Name (optional)

11 Fossum Geomodel

***************************************************************
ial model input parameters:

B0 B1 B2 B3 B4 G0 G1 G2 G3 G4
(Pa) (Pa) (Pa) (Pa) (ndim) (Pa) (ndim) (1/Pa) (Pa) (ndim)

1.30E+10 4.25E+10 4.11E+08 1.20E+10 0.021 9.86E+09 0 0 0 0

RJS RKS RKN A1 A2 A3 A4 P0 P1 P2
(m) (Pa/m) (Pa/m) (Pa) (1/Pa) (Pa) (rad) (Pa) (1/Pa) (1/Pa^2)

0.00E+00 2.00E+13 1.00E+12 8.43E+08 2.73E-10 8.22E+08 1.00E-10 -3.14E+08 1.22E-10 1.28E-18

P3 CR RK RN HC CUTI1 CUTPS T1 T2 T3
(1) (ndim) (ndim) (Pa) (Pa) (Pa) (Pa) (s) (1/s) (ndim)

8.40E-02 6 0.72 5.00E+06 9.00E+10 1.00E+11 3.00E+06 0.00E+00 0 0

T4 T5 T6 T7 J3TYPE A2PF A4PF CRPF RKPF SUBX
(1/s) (Pa) (s) (Pa) (ndim) (1/Pa) (rad) (ndim) (ndim) (ndim)

0.00E+00 0.00E+00 0.00E+00 0.00E+00 3 2.73E-10 1.00E-10 6 0.72 0

***************************************************************
path specifications:

time npts nprt ltype* c11 c22 c33 c12 c13 c23
(s) (ndim) (ndim) (ndim)

0 0 0 111111 0 0 0 0 0 0
1 100 2 444222 -1.00E+09 -1.00E+09 -1.00E+09 0 0 0
2 100 2 444222 0.00E+00 0.00E+00 0.00E+00 0 0 0

 type parameter for each component, cij:

1 = strain rate         ( 1/s  )
2 = strain                 (   1   )
3 = stress rate       ( Pa/s)
4 = stress               (  Pa  )

***************************************************************
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• Symmetry testing: Consistent predictions were verified for identical loading applied 
in different directions (e.g. uniaxial strain in the 1-direction compared with the 2-
direction). Consistency has also been tested for stress paths that intersect the yield 
surface at symmetrically equivalent points and for trial stress rates normal to the yield 
surface (to verify that the stress rate had no tangential component). 

• Extensive comparison testing:*   To date, the GeoModel has been implemented in 
five finite-element codes: (ALEGRA [8,49], PRESTO [26], JAS3D [5], EPIC [24], 
legacy PRONTO3D [45]). A disturbing number of discrepancies (e.g., wave arrival 
times differing by as much as 10% or peak stresses differing by almost an order of 
magnitude) have been identified by comparing predictions for the same problem
simulated by different finite-element codes. In all but a few cases, these discrepancies 
have been traced to host-code-level (not constitutive-level) errors (e.g., hour-glassing, 
handling of boundary conditions, artificial viscosity, time-step control, etc.). Resolving 
such discrepancies is the model verification responsibility of the host code owners, not 
the GeoModel developers.†  The ability of the GeoModel to reduce to simpler models 
(e.g., nonhardening elastoplasticity) has often proved invaluable in determining if a 
simulation problem originates from the GeoModel or elsewhere in the host code. When, 
for example, an undesired feature in a calculation persists even when the GeoModel is 
run using simplified parameters, a comparison test can be performed using the existing 
(presumably better verified) independent version of that model within the finite-element 
code. We have, for example, often compared a host code’s standard elasticity model 
with the GeoModel run in an elastic mode. In one instance where a discrepancy was 
traced to the GeoModel, it was attributed to failure of the code owner to follow the 
GeoModel installation instructions (page 75). In a few cases, comparison testing did 
indeed reveal GeoModel bugs that have since been corrected.

• Comparison with exact analytical solutions: Analytical solutions are not 
available to verify all of the GeoModel’s features acting simultaneously. However, each 
GeoModel feature has been individually verified to ensure that the promised 
quantitative material response is delivered (e.g., accurate tracking of a specified porosity 
crush curve, exact apparent strengthening in high rate loading, etc.). Depending on how 
the model parameters are set, the GeoModel can be idealized to a form for which some 
problems admit exact solutions. One example is that of a linear Mohr-Coulomb material 
with an associative or a non-associative flow rule in homogeneous loading. This class of 
problems was recently studied in a verification and benchmarking activity sponsored by 
the Defense Threat Reduction Agency (DTRA) through its Advanced Concepts 
Technology Demonstration (ACTD) Project. These exercises were part of a larger 
Verification and Validation (V&V) effort to increase confidence in prediction of low-
yield nuclear damage of underground (tunnel) facilities in jointed (in situ) rock mass. 
The problems are designed to increase in complexity, by invoking additional physics in 
the material models, until a level is reached that is deemed sufficient to model precision 
field tests. This work will be described in further detail later in this chapter.  

* Testing a numerical model in multiple host codes has been vital to our SQA process. If two codes 
agree, then no conclusion may be drawn. If, however, two codes predict different answers, then at 
least one of them is not solving the equations properly (or is not solving the same equations). 
Resolving such discrepancies has time and again expedited bug identification and resolution.

† Incidentally, the disquieting frequency of bugs originating within the host code (not the constitutive 
model) reiterates the importance of specialized constitutive model drivers in constitutive model 
verification. Constitutive models should not use finite-element codes as their primary verification 
platform.
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• Consideration of the method of manufactured solutions (MMS): The MMS 
method of SQA entails first solving an inverse problem in which simple (e.g., 
quadratically varying) analytical time histories for the response functions are substituted 
into the governing differential operators to obtain (probably with the assistance of a 
symbolic mathematics program such as Mathematica) an expression for the input 
functions that would produce the pre-specified response function. The numerical model 
is then sent this analytically determined input function to verify that the original (pre-
selected) response function is recovered. For the GeoModel, using MMS would require 
pre-selecting an analytically simple stress history to determine a strain history to use as 
input in the numerical simulation. To date, this technique has not been used in the 
GeoModel verification process. Solving the inverse problem is quite difficult because 
the GeoModel’s differential operators are “branched” (one set is used during elastic 
deformation, while another is used during plastic loading, and the internal state variable 
evolution equations themselves are coupled to the location of the stress on the current 
yield surface). However, by using simplified model input parameters, solving the 
inverse problem might be tractable, so MMS might indeed prove useful in the ongoing 
(still incomplete) GeoModel verification process.

• order-of-convergence:*    Time steps for complicated plasticity models often must 
be much smaller than the time step used by the host (finite-element) code. The 
GeoModel’s governing equations change upon reaching yield, and this transition 
typically occurs somewhere in the middle of the host code’s time step, which implies 
that the constitutive model must break the step into elastic and plastic parts. Moreover, 
further subcycling within the constitutive model is required to avoid “drift” of internal 
state variables into non-physical or inconsistent domains.†  Subcycling complicates the 
meaning of a convergence study performed at the host code level. Preliminary tests (see 
page 86) indicate that each subcycle within the GeoModel is first-order convergent, but 
(recall the last footnote on page 79) we have not yet performed sufficient tests to 
consider this claim fully verified for a broad variety of load paths. Subcycling in the 
GeoModel has been massively improved over earlier versions. Problems that formerly 
took 2000 code steps to converge to an acceptable accuracy‡ can now be run to the same 
pointwise accuracy in only 10 apparent host-code steps (internally, the GeoModel still 
runs ~2000 subcycle steps, but this improvement in allowable host-code step size is 
essential in field-scale finite-element simulations). An independent research effort [16] 
is nearing completion in which an implicit integration scheme has been developed for a 
simplified version of the GeoModel, but verification of its order-of-convergence is not 
yet completed.

* The term “order-of-convergence” is preferred over “order-of-accuracy” because a converged solu-
tion is never necessarily a correct solution. For example, if the return direction is incorrect in a clas-
sical predictor-corrector plasticity scheme, then the algorithm will converge, but to the wrong 
result. The GeoModel, by the way, does not use a return method — it explicitly integrates the equa-
tions, using subcycling to assist with the change of governing equations upon yielding.

† Of course, higher-order integration is also an option, but the total computational overhead some-
times exceed that of a well-written subcycling algorithm. Moreover, higher-order integration algo-
rithms are notoriously difficult to maintain when the governing equations themselves are being 
revised during parallel development of the physical theory.

‡ At this stage in our ongoing verification process, we are using so-called “viewgraph” assessment of 
accuracy in which solutions are compared visually by plotting them together. This easy assessment 
method simply bounds the discrepancy between two seemingly overlaying plots to be less than dif-
ferences perceptible to the human eye relative to the size of the graph.
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Preliminary convergence testing. Let  
denote a fine-resolution solution curve (e.g. stress as 
a function of strain) corresponding to  evenly 
spaced time steps. Let  denote a coarser solution 
corresponding to  time steps. In both cases, the 
continuous curves  and  are here regarded 
as piecewise linear interpolations between discrete 
function values at the timesteps. Both curves are 
normalized by the peak value of . 

The “integrated discrepancy” is defined

 (7.1)

The “pointwise discrepancy” is defined

 (7.2)

Figure 7.3 shows that the basic algorithm without 
subcycling is first-order accurate. Figure 7.2 shows 
that subcycling makes the solution nearly pointwise 
converged ( ) even for inordinately 
coarse calculations of 1 to 3 time steps. This highly 
desirable behavior can be of paramount importance 
when the model is run in finite-element codes that 
take large steps.
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25 time steps

Figure 7.2. Subcycling test for hydro-
static loading.   The ordinate is the first 
stress invariant  and the abscissa is volu-
metric strain . Red is without subcycling. 
Green is with subcycling. Black, , cor-
responds to  time steps.
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sisisi
Verification: single-element problems (regression suite)
A single-element problem is one for which the stress and strain fields do not vary in 

space. As summarized below, this section presents four different single-element load 
paths, each separately solved using two different GeoModel parameter sets (associative 
and non-associative linear Mohr-Coulomb — see Appendix B, page B-22). To determine 
corresponding sets of material parameters for the GeoModel, the linear Mohr-Coulomb 
parameters were used to create simulated data pairs for the limit state and plastic potential 
functions. Following the instructions in Appendix A, GeoModel was then fitted to these 
data pairs to determine the limit-state parameters  and non-associative 
material parameters . The compaction parameters 

 were selected such that no compaction occurred over the stress 
range specified for the load paths. Likewise, hardening and rate dependence were dis-
abled. Results are summarized in Figs. 7.4 through 7.7.

Table 7.1: Mohr-Coulomb Parameters for single-element verification testing

Parameter 
(Material Properties)

Symbol Associative Non-associative

Young’s Modulus E 31.0 GPa 31.0 GPa

Poisson’s Ratio ν 0.26 0.26

Friction angle φ

Dilation angle

Cohesion 15.7 MPa 15.7 MPa

Dry bulk density 2.34 MPa/m3 2.34 MPa/m3

ψ a1 a2 a3 a4, , , ,
ψPF a2

PF a1
PF, ,{ }

R RPF p0 p1 p2 p3, , , , ,{ }
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Software “confidence building” activities
Discussion. 
In Fig. 7.7, predictions of the GeoModel overlay the analytical results.*  Though not 

yet proved conclusively, we contend that the slight discrepancy apparent in Figs 7.4 and 
7.5 arises not from constitutive model errors, but instead from host code errors in the han-
dling of stress boundary conditions. The fully strain-controlled problem (Fig. 7.7) exhibits 
no significant solution discrepancy. However, moderate error is apparent in Figs 7.4 and 
7.5, which involve two stress boundary conditions (the lateral stresses). Like most consti-
tutive models, the GeoModel takes strain rate as input and returns updated stress as output. 
If the host finite-element code handles stress boundary conditions improperly, then it will 
have slight errors in the strain rate that it sends to the GeoModel, thereby causing predic-
tions to deviate slightly from analytical solutions. Such errors are not uncommon when 
dynamic finite-element codes are used to attempt to simulate homogeneous deforma-
tions.†  To reiterate, we believe boundary condition errors in the host code (not the Geo-
Model) are responsible for the solution errors, and we anticipate re-running these 
simulations in a true constitutive model driver to verify this claim.

Other single-element tests. Whenever the source code is changed, we perform 
approximately 20 single-feature single-element verification checks for each of our regres-
sion tests performed under loading that is simple enough to admit analytical solutions.

Fig. 7.8a depicts results from a hydrostatic loading simulation in which plastic volu-
metric strain (EQPV) is plotted against pressure (–I1/3). The thick yellow curve in 
Fig. 7.8a is the crush curve (Eq. 4.67) determined independently by user specified values 
of the GeoModel parameters . The predicted volumetric strain  (black line in 
Fig 7.8a) is verified to remain zero until the pressure reaches the crush curve, after which 

* Precisely quantifying verification error lags far behind other more important constitutive SQA pri-
orities, so we will be satisfied here and throughout this chapter with assessing agreement between 
computed and analytical results via a so-called “viewgraph metric,” where the error is nebulously 
bounded by what can be perceived visually, given the plot size.

† The only way to ensure a precisely homogeneous deformation in a dynamics finite-element code is 
to bypass solution of the momentum equation. More correctly, homogeneous loading requires a 
body force  identically equal to particle acceleration , making the momentum equation trivial.b
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Software “confidence building” activities

p t(
it drops along the crush curve as it should. The stress-strain curve (inset in 7.8a) unloads 
correctly to the user-specified peak strain parameter . For non-hydrostatic loading, we 
have verified (trend-test) that shear-enhanced pore collapse causes inelasticity to com-
mence prior to the pressure reaching the crush curve. 

Fig. 7.8b simultaneously verifies the GeoModel’s ability to predict an apparent 
increase in strength under dynamic loading and its ability to predict different strengths in 
triaxial extension vs. compression. In that problem, pressure dependence of yield was sup-
pressed and the TXE/TXC strength ratio was set to 1/2, resulting in a tensile strength half 
as large as the compressive strength.*

Verification: Hendren & Ayier pressurized cylinder
The problem depicted below, solved for subcases of associative and non-associative 

flow, involves a circular tunnel in a Mohr-Coulomb material loaded in a plane strain con-
figuration. A DTRA contractor provided the analytical solutions. The material parameters 
are the same as those used in the previous verification problems.

The results in Fig. 7.9 show that the GeoModel solutions agree with analytical results. 
Though not confirmed conclusively, the very slight discrepancies are hypothesized to 
result from different strain definitions used in the GeoModel and analytical solution (or 
possibly host code traction boundary condition issues similar to those discussed earlier).

* The TXE/TXC strength ratio applies to TXE and TXC states at the same pressure. When pressure 
dependence of yield is allowed, the TXE peak in a verification test like this will not and should not 
be 1/2 the magnitude of the TXC peak. 
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Elastic free-field wave form (finite-element verification)
This section describes a field-scale test for verifying installation of the GeoModel in host 

finite-element codes. As emphasized earlier, verifying a constitutive model is distinct from verify-
ing its implementation within a finite-element code. After a constitutive model becomes one of 
many components within a much larger finite-element model, the potential sources of solution 
error expand to now include boundary conditions, artificial viscosity, and other aspects of the host 
code’s method of solving the partial differential equation that governs momentum balance. 

As indicated in Fig. 7.10, a time varying velocity 
(identical to the one later discussed on page 107) was 
applied at the boundary of a spherical cavity (radius 
204m). The GeoModel’s yield features were disabled 
to allow predictions for the velocity at the outer 
radius (470m) to be compared with an analytical 
elasticity solution.* Implementations of the Geo-
Model in two finite-element codes were tested. One 
code was unable to reproduce the correct response 
because of bugs in roller boundary conditions. 
Fig. 7.11 demonstrates that the second code (JAS3D) 
was capable of reproducing the analytical solution well enough to suggest that the GeoModel is 
performing correctly. While the moderate solution error might be attributable to the analytical 
solution’s presumption of small strains, further study (by the code owners, not the GeoModel 
developers) is warranted to determine if the solution errors result from under-integration, or some 
other aspect of the finite-element model such as artificial viscosity (both codes’ solutions were 
strongly affected by artificial viscosity — default settings for artificial viscosity were insufficient 
to reproduce the analytical results). This elasticity verification problem is revisited and generalized 
in the plasticity validation test on page 107, where code predictions are compared with data. 

* Aldridge’s analytical solution [1] is expressed in terms of integrals that are evaluated numerically 
in the frequency domain using independent software provided by Aldridge. 

Figure 7.10. Spherical cavity geometry. 

roller

roller

JAS3D-Explicit Dynamic FEM + GeoModel elastic
Aldridge-Analytical/Numerical*

Figure 7.11. Finite-element vs. analytical/numerical elastic wave velocity 
at 470 meters from a velocity spherical cavity source at 204 meters. 
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8. Parameterization (calibration)
Appendix A describes how to characterize a material for the GeoModel. Using these 

procedures, several materials have already been fit, as summarized in Fig. 8.1 (compare 
these with Figs. 1.1 and 3.3). GeoModel parameters for these materials are in Appendix B.

Model Prediction Versus Limit-State Data from Triaxial Compression Tests Conducted 
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Figure 8.1. Meridional limit curves for some materials already parameterized to the GeoModel. 
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Parameterization (calibration)
Nonlinear elasticity
Figures 8.2 and 8.3 demonstrate the ability of the GeoModel’s nonlinear elasticity fit-

ting functions (Eqs. 4.10 and 4.9) to reproduce nonlinear elasticity data. Parameters were 
assigned using the least-squares model calibration tools described in Appendix A. 

Figure 8.2. Nonlinear elasticity in shear.   This figure shows the GeoModel fit to concrete data [46] 
from the unload portion of a triaxial compression test conducted at a confining pressure of 200 MPa. Here, 
the principal stress difference is plotted against the principal strain difference, thereby making the slope 
equal to twice the shear modulus.
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Figure 8.3. Nonlinear elasticity in hydrostatic loading.   This figure shows the GeoModel fit to con-
crete data [46] from the unload portion of a hydrostatic compression test from 200 MPa. Here, the slope 
equals the bulk modulus.
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Elastic-plastic coupling
For many materials, elastic moduli are unaffected by inelastic deformation. However, 

Fig. 8.4 shows data for a material whose elastic properties are affected by inelasticity. 
Modeling this effect requires using the enhanced moduli fitting functions, Eqs. (4.33) and 
(4.34), which permit the shear and bulk moduli to vary with equivalent plastic strain 
(determined from data by the residual strain upon unloading to a zero stress, as explained 
in Appendix A). For the GeoModel to be considered a good fit to data, the simulated 
unloading curves merely need to be parallel to experimental unloading curves (not neces-
sarily overlapping unless the data and simulation unload from the same strain).

Figure 8.4. Elastic-plastic coupling: deformation-induced changes in elastic moduli (Salem Lime-
stone).   (a) the tangent bulk modulus can change in response to changes in porosity (i.e., volumetric 
plastic strain). (b) Likewise, the tangent shear modulus, especially at low shear stresses, can change in re-
sponse to plastic deformation.
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Triaxial Compression
Triaxial compression (TXC) and triaxial extension (TXE) testing is integral to param-

eterization of the GeoModel. By performing a series of tests, as described in Fig. 3.3, the 
limit state (onset of softening) can be mapped out. For example, Fig. A.5(a) on page A-6
shows raw data from a a suite of TXC tests, indicating how the peak values in each test 
provide one data point on the GeoModel limit surface Fig. A.5(b). Data from a similar set 
of experiments for concrete, along with the GeoModel least-squares fit of Eq. (4.8) are 
shown in Fig. 8.5. Figure 8.1 shows similar plots for other materials. Appendix A
describes the least-squares fitting procedures in more detail.

Recall that triaxial testing normally begins with a hydrostatic “load-up” phase, indicated 
by the horizontal red arrow Fig. 8.6a (where ). During the hydrostatic leg, defor-
mation is initially nonlinearly elastic until the virgin yield surface is reached, at which 
time microscale stress concentrations caused by the presence of pores become too large to 
resist elastically. Continuing to push the hydrostatic stress to higher levels results in 
inelastic pore collapse with associated hardening (expansion) of the yield surface. In 
Fig. 8.6, the target hydrostatic stress state for a given experiment (which marks the transi-
tion from the hydrostatic leg to the triaxial leg) was MPa, giving an  value of -
1200 MPa. Pressure-volume data taken during the hydrostatic leg may be used to deter-

Figure 8.5. Shear failure limit curve compared with concrete data.   Ref. [46].
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mine the GeoModel parameters  by following instructions in Appendix A. 
Because multiple triaxial experiments must be performed to fully characterize a geologi-
cal material, variations observed during hydrostatic loading from different tests can be 
used to quantify the material property variability.

After the hydrostatic leg, the triaxial leg (angled red arrow in Fig. 8.6a) commences by 
increasing the axial load on the specimen while holding the lateral stress constant. As 
explained on page 16, the stress path follows a straight trajectory in the meridional plane 
with a slope given by

 (8.1)

p0 p1 p2 p3, , ,{ }

Figure 8.6. Progression of the hardening yield surface (family of blue lines) under a triaxial compres-
sion test (red path), illustrated with correspondence of the meridional plane to the stress-strain diagram. 

  The straight red line segments shown show this two-stage stress trajectory (hydrostatic loading followed 
by triaxial loading) in the meridional plot of  (which is proportional to the effective shear) versus . 
Shear-enhanced dilatation corresponds to reaching a zero local yield slope.

J2 I 1

(a)

(b)

d J2( )

d I 1( )
----------------- 1

3
-------=
100



Parameterization (calibration)
The transition from hydrostatic to triaxial loading is reflected by a pronounced change 
in slope in the stress-strain plot of Fig. 8.6. As the axial stress is increased during the triax-
ial leg, the yield surfaces continues to harden outward even more, now further assisted by 
the presence of a nonzero stress deviator. In Fig. 8.6 the slope of the yield surface is ini-
tially negative at the stress state (i.e., where the straight red load path and curved blue 
yield surface lines intersect). Consequently, the outward normal to the yield surface during 
this early part of the triaxial phase has both a deviatoric component and a compressive iso-
tropic component. When the normal to the yield surface is compressive, the inelastic volu-
metric strain will be compressive as well. However, the isotropic component of the yield 
surface normal changes direction towards the end of the triaxial leg (i.e., the local slope of 
the yield surface changes sign), which means that the inelastic volumetric strain is dilata-
tional (expanding) even though all stress components are compressive. The “critical state” 
at which the yield surface has a zero local slope on the load path marks the onset of shear-
enhanced dilatation. Thus, as illustrated qualitatively in Fig. 8.7 and explained in detail in 
Appendix A, triaxial loading is used to determine parameters in the GeoModel that govern 
yield surface evolution and cap curvature.

Figure 8.7. Shear-enhanced dilatation under compression.   The exaggerated schematic shows that 
crack faces must overcome surface incompatibilities — they cannot slip over each other without opening 
even if they are in compression. Moreover, fragments of broken material can become lodged in the crack 
face and cause crack opening by their rotation. Crack kinking (in the direction of Mode I loading) further 
contributes to the dilatation associated with crack opening. The dark regions in the micrograph [12] are 
pores (which collapse under sufficient pressure). The cracks in inclusions produce “micro-rubble” that ulti-
mately generates, through rotation, inelastic volume increase under shear loading even if all principal 
stresses are compressive.

DiGiovanni et al, 2000DiGiovanni et al, 2000DiGiovanni & Fredrich [12]
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Physically, an increase in inelastic volume during compression (which is quite commonly 
observed for brittle materials) is typically attributed to the growth of microcracks under 
shear. As the surfaces of these cracks move relative to one another, the crack must open up 
(dilatate) both to overcome geometric incompatibilities in their surface roughness and to 
permit crack kinking. This interpretation of shear-enhanced dilatation is illustrated sche-
matically and through SEM imaging in Fig. 8.7.

Parameterization: Rate dependence
The GeoModel’s relaxation parameters  may be determined through a 

series of lab-scale laterally-confined Kolsky bar tests [Fig. 8.8] in which a sample is sub-
jected to uniaxial compression at various strain rates. 

Figure 8.9 shows results for a series of Kolsky (split Hopkinson) bar strain rate tests 
conducted on unconfined compression specimens of Salem Limestone [17]. The peak 
stress in these experiments is used to assign values of the GeoModel relaxation parameters 
to properly correlate apparent strength with strain rate. As seen, the unconfined compres-
sive strength increases with strain rate and is well-accommodated by GeoModel theory.

For a discussion of how the data in Fig. 8.9b are used to assign values to , 
see Appendix A.
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9. Building confidence in the physical theory
In a weak sense, demonstrating (as we did in the previous chapter) that the GeoModel 

is capable of being parameterized from controlled laboratory data lends some credibility 
to the physical foundations of the model. However, truly validating a model after its 
parameters have been determined from standard laboratory data requires showing that the 
model can, without any change in pre-calibrated parameters, predict material response 
under different (non-calibration) loading scenarios. Ideally, to validate a constitutive 
model (not its implementation into a host finite-element code), one would prefer to com-
pare the model predictions against test data from homogeneous loading experiments that 
were different from the homogeneous loading tests conducted for calibration. 

Thorough testing of any material constitutive model along with its implementation in a 
host code must, of course, include simulation of applications for which model predictions 
can be compared with structural response measurements. The goal is to assess the degree 
to which the integrated model (i.e., its installation into a host code) is capable of predicting 
material system response to non-trivial loading scenarios. 

Parameterization entails fitting to a subset of discrete points in parameterization data 
tables (e.g., as described on page 99, the limit function is parameterized by using only the 
peak stress values, not all values measured in the test). Model validation therefore 
includes assessing the fitted model’s ability to interpolate well between other points in 
these stress-strain response curves (i.e., points that were not used in calibration). Similarly, 
the GeoModel’s rate dependence parameters are determined by using only the peak stress 
values in Kolsky bar experiments. Therefore, the model’s ability to match the other data 
points in those experiments is a validation test.

In addition to merely ensuring that all data in parameterization tests are well modeled, 
a better validation test should exercise the model in application domains in which multiple 
physical mechanisms are acting simultaneously. The goal is to assess whether or not the 
GeoModel parameterization instructions in Appendix A  can lead to a high-quality set of 
material model properties that are predictive in general loading scenarios. This chapter 
describes some validation problems that have been studied to date. In all cases, these prob-
lems were run using only the single GeoModel parameter set obtained from calibrating to 
other data for the material — no parameter adjustments were made to improve model 
agreement for these tests.
104



Building confidence in the physical theory
Post-calibration Triaxial loading
The nonlinear elasticity Eqs. (4.9) and (4.10) are parameterized from shear and hydro-

static unloading data. The shear limit function Eq. (4.39) parameterized through peak 
states in triaxial testing. The crush curve Eq. (4.67) parameterized through purely hydro-
static testing. Once parameterized in this way, the GeoModel may be applied to predict the 
irreversible plastically-hardening stress-strain response at a variety of other stress paths. 
For example, Fig. 9.1 compares GeoModel predictions with simple triaxial data at various 
confining pressures (these simulations all use a single set of GeoModel parameter values).

Figure 9.1. (a) GeoModel prediction of uniaxial strain loading. (b) GeoModel predictions of triaxial 
stress-strain response at various confining pressures.   From Ref. [46]. The ability of a single parameter 
set to agree so remarkably well with this suite of data is a validation.
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Building confidence in the physical theory
Field-scale penetration
Figure 9.2 shows results from a pre-test prediction of depth of penetration and dis-

placement histories. In tests like these, material constitutive models are often considered 
“above average” if they are predictive within 20%. As seen, the GeoModel performed 
exceptionally well by this metric. 
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Figure 9.2. After the GeoModel was fitted to laboratory-scale material property tests, it was used to 
predict projectile penetration depth using spherical cavity expansion analysis. 
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Building confidence in the physical theory
Free field wave form for spherical shock loading
Figure 9.4 shows displacement and velocity his-

tories for an underground test in which a wave propa-
gates from an explosive point source. A measured 
velocity history at a point 204 meters from the source 
was used as the velocity boundary condition of the 
simulation. The goal was to predict a second mea-
sured velocity history at a point 470 meters from the 
source (see Fig. 9.3). Unlike the similar elasticity
verification test described on page 95, this validation 
test used elastic-plastic field-scale parameters that 
were determined by applying the GeoModel’s cali-
bration procedures described in Appendix A (back-fitting alteration of these independently deter-
mined calibration parameters was disallowed, as should be the case for any validation test).

The GeoModel (along with its implementation within the host finite-element code, JAS3D) 
comes far closer to matching data than simpler models such as non-hardening Von Mises plasticity, 
indicating that the GeoModel’s advanced physical features (especially pressure sensitivity) are 
important. Because the GeoModel falls short of a compelling agreement with data, further study is 
warranted. Unlike the verification study presented on page 95, this validation simulation is over-
predicting peak velocity. As was the case in the verification study, code predictions were strongly 
affected by artificial viscosity, suggesting that disagreement with data might be rooted in host code 
problems as much as shortcomings of the GeoModel. Of course, natural spatial variability of in-
situ rock (which is neglected in the simulation) may play a role, as might the response time of 
gauges used to acquire the data, or myriad other possible error sources.

This concludes our overview of preliminary validation testing. More extensive model val-
idation activities (now underway) require publication of this theory and user’s guide to pro-
vide a resource document that allows analysts to apply the GeoModel properly.

Figure 9.3. Spherical cavity geometry. 

roller

roller

Figure 9.4. GeoModel + JAS3D finite-element prediction (blue) vs. 
measured (red) velocity and displacement at 470 m. from a spherical cavity 
velocity source at 204 meters.  
107



Closing Remarks
10. Closing Remarks

The preceding chapters have attempted to elucidate the physical foundations and 
domain of applicability of Sandia’s GeoModel. This model was developed in response to 
the need for a predictive model that could be used for a wide range of applications while 
maintaining numerical tractability in the context of Sandia’s solid mechanics finite-
element software. Three key applications for this work are in projectile penetration 
research, analysis of hard and deeply buried targets, and reservoir-scale modeling of 
formation compaction caused by pore pressure drawdown during oil or gas production. 
With the emergence of the capability to simulate the large-scale mechanical behavior of 
complex geosystems by virtue of recent advances in software and hardware, Sandia 
recognized the need to enhance the material modeling capabilities for geomaterials. A 
large-scale, long-term effort was begun that brings together activities in laboratory testing, 
basic research, software development, verification, validation, documentation, and quality 
assurance. The goal is to provide a rock mechanics predictive capability that fully 
accounts for the complex nature of in situ rock masses. While this is an on-going program, 
the GeoModel has reached a stage of maturity that warrants documentation of the effort to 
date. The GeoModel is a genuine unification and generalization of simpler models, and as 
such it is capable of satisfying the needs of almost any structural application involving 
geomaterials. While “first-principles” microscale theories have influenced the general 
model framework, physically motivated phenomenological judgements about relations 
between stress and strain have been given ultimate priority to more accurately match 
observed laboratory behavior.

In the laboratory, most rocks exhibit nonlinear elastic deformation upon unloading 
and re-loading, hysteresis loops, different behavior in extension than in compression, 
strain-rate sensitivity, pressure dependence, and post-peak softening. Moreover, high 
porosity rocks under compressive mean stresses and non-zero deviatoric stresses, involve 
a complex interplay of deformations from competing mechanisms including pore collapse 
and microcrack-microvoid development, which occur simultaneously allowing 
macroscopic pre-failure dilatation to occur even as pores continue to collapse. In addition, 
the strain-rate sensitivity of some porous rocks depends on the predominant deformation 
mechanism, e.g., the strain-rate sensitivity of shear and extensional failure is different 
from that of pore collapse, and the strain-rate sensitivity itself may be pressure dependent. 
This report summarizes the progress toward achieving a realistic rock constitutive theory 
that can be calibrated via standard laboratory experiments and is numerically tractable for 
massively parallel calculations using tens of millions of three-dimensional finite elements 
and loading conditions that involve ground shock and other non-quiescent processes. 
While the GeoModel has achieved many of the stated objectives, there is still much to be 
accomplished. Current model-enhancement activities (to be documented in future reports) 
include pressure dependence of the extension/compression strength ratio, softening and 
failure (fracture), anisotropic jointed rock behavior (as observed in situ), and natural 
spatial variability resulting in localization.
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APPENDIX A.  Parameterizing the GeoModel
APPENDIX A.
Parameterizing the GeoModel

The following steps describe how to determine values for parameters used in the Geo-
Model. In many cases, specialized parameterization software (e.g., HYDROFIT, 

SHEARFIT, etc.) was used to perform nonlinear regression to determine optimized param-
eter values. This supplemental software, which applies nonlinear least squares fitting is 
available from Arlo Fossum. Alternatively, nonlinear optimization is available via the 
“Solver” add-in of MS Excel.

STEP 1.Use hydrostatic pressure vs. total volumetric strain data to obtain 
the nonlinear elastic bulk modulus parameters ( , , and ) as well 
as the crush curve parameters , , , . Hydrostatic data are used to 
obtain the nonlinear bulk modulus parameters in Eq. (4.9),

 (A.1)

as well as the parameters in the crush curve, Eq. (4.68),

, where  (A.2)

First express data as a column or space delimited table with the first column being 
total volume strain  and the next column , where  is the pressure 
(positive in compression). Determine the parameters in Eq. (A.1) using Fossum’s 
HYDROFIT program* (which assumes linear elasticity when ). The HYDROFIT
program employs standard nonlinear regression fitting procedures [35] and includes 
parameter sensitivities [i.e., derivatives of Eq. (4.68) with respect to each 
parameter]. The input file for the HYDROFIT program contains one line with five 
values (initial guesses for the parameters , , , ,  in that order) and a 
second line that contains five integers, each having a value 1 or 0 to indicate 
whether that parameter is to be optimized (if not, its value is fixed). The peak 
inelastic volume strain, , roughly equals the initial porosity. Refer to Fig. 4.14 for 
guidance on how to set initial guesses for the other crush parameters. The HYDROFIT
program outputs optimized values for , , , , , , and .

* HYDROFIT is available upon request. At present, this software presumes linear elasticity when 
. If the data show nonlinear elasticity, as in Fig. A.1, HYDROFIT will provide only approxi-

mate parameter values. At present, fitting nonlinear parameters is not automated.
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APPENDIX A.  Parameterizing the GeoModel
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Figure A.1. Ideal hydrostatic parameterization data.   The unloading portion is used to obtain the 
elastic bulk modulus parameters , , and . With these parameters, the HYDROFIT program con-
verts the loading portion of the data to a crush curve (see Fig. 4.14), and employs nonlinear regression 
to obtain the crush parameters , , , and . For this material (a ceramic powder, zircoa), the ini-
tial elastic loading curve is so small in comparison to the scale that it is not visible.

b0 b1 b2

p0 p1 p1 p2

Figure A.2. Less-preferable hydrostatic parameterization data.   Like the data for the materi-
al shown in Fig. A.1, this hydrostatic compression test (for frozen soil) was conducted nearly to 
full pore collapse, but the loading curve shows signs of material creep, which is not included in 
the GeoModel.
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APPENDIX A.  Parameterizing the GeoModel
STEP 2.Use triaxial compression data to obtain the shear modulus 
parameters , , and . This step determines the parameters in Eq. (4.10),

 (A.3)

Arrange the triaxial data as a two-column table, the first column being the axial 
strain  and the second column being the stress difference . Then use 
nonlinear least squares regression analysis to obtain the shear modulus parameters 

, , and . 

As illustrated in Fig. 3.3 in the main text, triaxial testing is typically performed as a 
two-stage process in which the material is first compressed hydrostatically to a 
given pressure. Then, during the second (triaxial) leg, the lateral stress is held fixed 
while the axial stress is varied. Only the elastic unloading data should be used for 
determining the nonlinear elastic shear modulus parameters. As explained on 
page 28, the plot of stress difference  vs. axial strain  will have a slope 
equal to Young’s modulus . Rather than directly using Young’s modulus  as a 
user-specified material parameter, the GeoModel requires the shear modulus . 
Recall that the nonlinear elastic bulk modulus  was found previously in step 1. 
The SHEARFIT program computes the shear modulus  from  and  by using the 
standard linear elasticity formula, , cited in Eq. (4.15). If fitting to rock 
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Figure A.3. Data representative of a triaxial compression parameterization test. The slope of the 
unloading curve is the nonlinear tangent Young’s modulus. Through standard moduli conversion formu-
las from linear elasticity, the previously determined bulk modulus parameters are used to obtain the 
elastic shear modulus parameters , , and . g0 g1 g2
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APPENDIX A.  Parameterizing the GeoModel
data, Poisson’s ratio, , is typically in the neighborhood of 0.2 (this 
is a useful “sanity” check). 

STEP 3.(optional) maintain a record of all peak stress states ever measured 
for every available quasistatic load-to-failure experiment ever 
performed for the material of interest. The softening threshold (peak limit) 
envelope is the boundary of any and all stress states quasistatically achievable for 
the material, including both elastically obtainable stress states and stress states that 
can be reached only through inelastic deformation. Unlike a yield surface, which is 
the boundary of elastically obtainable stresses (and which therefore will, in general, 
evolve as the microstructure is altered in response to inelastic deformation), the 
limit envelope is fixed in time (see Fig. 1.1 on page 5). All achievable yield surfaces 
(an infinite set) are contained within the single limit envelope. Characterizing the 
limit envelope requires numerous different experiments. Typically, each individual
experiment has precisely one stress state at which the second stress invariant  
achieves a peak value. If the material softens before rupturing, the value of  at 
failure might be lower than . It is the peak that is of interest, not the post-
softening value at failure.  
 
For every available quasistatic load-to-failure experiment, find the stress state at 
which  is larger than for any of the other stress states in that experiment. 
Construct a table of data triplets , where  and 

 are the values of  and  at the stress state for which  is at its peak 
value. The number of entries in your peak stress table will equal the number of 
experiments run to failure. The goal here is to gather sufficient data to parameterize 
both the Lode angle function  and the shear limit envelope in Eq. (4.39), 

, where    (shear limit function).  (A.4)
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APPENDIX A.  Parameterizing the GeoModel
STEP 4.Use peak stresses from a family of triaxial compression tests to 
determine the shear failure envelope parameters , , , and .

Recall that the  function represents a peak shear limit envelope in the meridional 
plane for which  is plotted against  for triaxial compression (TXC) stress 
states. Thus, the set of all stress states ever observed in TXC (Lode angle 

) must fall below the curve , modulo experimental scatter. 
Stated differently, this curve defines boundary of all stress states that ever have been 
(or ever can be) observed in quasistatic TXC loading. A sufficient number of TXC 
experiments must be conducted under various confining pressures so that the 
bounding surface begins to take form. On other meridional planes (i.e., at other 
Lode angles), the GeoModel theory presumes the bounding curve is adequately 
described by , which simply means that the GeoModel 
presumes that the limit function at non-TXC Lode angles is simply a scalar multiple 
of the TXC function. Once the  function has been determined in this 
parameterization step, the peak stress data at other Lode angles will be used later to 
determine the  proportionality function.

Using only the TXC ( ) data create a scatter plot of all ever-achieved TXC 
values of  and . A scatter plot of all TXC stress data measured at various 
confining pressures might look somewhat as sketched below:

 
In Fig. A.4, the peak data pairs (darkened dots) correspond to the  
values from your table of peak-stress invariants collected in STEP 3. A suite of actual 
TXC experiments for porcelanite is shown in Fig. A.5, along with further 
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Figure A.4. A family of TXC tests conducted to failure.   The boundary of data 
points defines the  function. All other (sub-peak) data points fall below this line. 
Plots like the are shown for various materials in Fig. 8.1.

Ff

J2 Ff I1( ) a1 a3e a2 I 1––( ) a4 I 1+= =

θ@peak 30°=
A-5



APPENDIX A.  Parameterizing the GeoModel
illustration of how discrete peak points from these experiments are transferred to a 
limit surface meridional plot for fitting to Eq. (A.4)

Once enough TXC experiments have been conducted for a well-defined shear limit 
boundary to emerge, the next step is to determine values of , , , and  that 
best fit the  function to this boundary. 

Given triaxial stress difference  vs. axial strain  data, Eqs. (3.28) and 
(3.29) show that value of  at peak is given by  and the value 
of  (i.e., the trace of the stress) at peak equals , where  
is the (constant) lateral confining pressure. The  data pairs from TXC 
experiments (i.e., those for which ) may be fed into a nonlinear 
regression parameterization program, SHEARFIT (available upon request) to 

Figure A.5. TXC stress-strain plots and extraction of their peak values to construct the meridional 
limit curve (data are for porcelanite).   (a) Each shear stress  vs. axial strain plot has exactly one 
peak value, as labeled. The value of  at this peak is found by applying Eq. (3.28),  
with  and  equal to the lateral confining pressure for the test. (b) The peak states are 
transferred to a plot of  vs.  for fitting to the  meridional limit function.
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APPENDIX A.  Parameterizing the GeoModel
optimize the parameters in Eq. (A.4). To use this program, create an input file 
containing, in the first line, your initial guesses for  and, in the second 
line, four logical integers (0 or 1) to indicate whether or not to optimize on the 
corresponding parameter. Refer to Fig. 4.1(a) to help decide appropriate initial 
guesses. If the data suggest a linear envelope at high pressures, then your first guess 
for  should be an approximation of the slope of this envelope. If in doubt, take 

 (i.e., assume the data asymptote to a constant value as pressure goes to 
infinity). Eyeball the data to set your first guess for  equal to the zero-pressure 
value of the linear asymptote line (extrapolate visually if necessary), set  to equal 

 minus your best estimate for the actual ordinate intercept of the low-pressure 
data (again, extrapolate if necessary). Finally, set  to equal an estimate for the 
initial (low-pressure) slope of the data divided by . Using these initial guesses, 
the SHEARFIT program applies nonlinear regression and outputs values for the , 

, , and  parameters.  
 
BEWARE: In typical TXC experiments, all principal stresses are compressive, 
making it is possible that SHEARFIT will return a meridional fit to the available data 
that corresponds to a shear limit envelope that does not corral the origin (implying 
nonphysically that zero stress is “unachievable”). If this occurs, you might want to 
append your table of observed  data with an entry , where 

 is your best estimate for the theoretical hydrostatic tensile strength of the 
material (therefore  is a negative number). Include this entry multiple times 
if necessary to force it to have greater weight in the nonlinear regression (or, 
preferably, perform more experiments to obtain a larger number of real data points 
at low values of ).

STEP 5.Use peak stresses from a family of triaxial extension tests to 
determine the extension to compression ratio . As was done above for 
TXC tests, construct a table of  data pairs corresponding to peak 
attained stresses in triaxial extension (TXE). These are the data pairs in your peak 
data table from STEP 3 that correspond to . For each of these TXE 
data pairs, compute

 (A.5)

where  is the TXC shear limit function parameterized in the previous step. Of 
course, each TXE experiment is likely to result in slightly different values for . 
At present, the GeoModel presumes that the TXE/TXC ratio  is constant. 
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APPENDIX A.  Parameterizing the GeoModel
Therefore, set the GeoModel parameter  equal to the average of each  computed 
using Eq. (A.5) for each available TXE experiment.
It is possible that the data might imply that the strength ratio  must vary with 
pressure, but the GeoModel presently assumes that  is the same at all pressures. 
Thus, until the GeoModel is enhanced to support pressure-varying strength ratios, 
modeling errors must be managed by measuring the parameter  at a confining 
pressures in the neighborhood where the GeoModel is likely to be applied. Similar 
statements can be made regarding any and all parameters used to define the 
GeoModel yield function. 

 
 
Sometimes, it might be impractical — or overly expensive — to obtain TXE data. 
In this case, an engineering approach for estimating  presumes that it obeys the 
same coupling to the meridional profile slope as predicted in classical Mohr-
Coulomb theory. Using Eq. (A.4) to set the TXC slope in Eq. B.19 in Appendix B, 
an estimate for the pressure-varying strength ratio is

 (A.6)

In the future, we hope to thoroughly explore the merits of this formula, which 
correlates the strength ratio with the TXC meridional slope. At present, the 
GeoModel presumes the strength ratio is constant. If, however, the above 
correlation formula can be substantiated, then we will likely incorporate it into 
future releases, thereby possibly eliminating the need for a user-specified  
altogether. Until then, you may evaluate the above formula at a value of  in the 
neighborhood where you plan to apply the GeoModel to obtain a reasonable 
estimate for .
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APPENDIX A.  Parameterizing the GeoModel
STEP 6.Determine the appropriate Lode function option J3TYPE. Recall that the 
GeoModel’s function  defines the shape of the octahedral profile shape for 
Lode angles spanning the range from TXE ( ) to TXC ( ). The 
GeoModel parameter J3TYPE (see page 45) dictates the functional form to be used 
for the  function. Non-triaxial data are difficult to acquire. If no such data are 
available, you will need to use engineering judgement as to an appropriate choice 
for J3TYPE. This parameterization step aims to guide the choice in the happy 
circumstance that non-triaxial data are available. 
 
As illustrated in Fig. 4.10, the GeoModel’s  function is defined to equal 1 in TXC 
and  in TXE. Large values of  correspond to small shear strengths. In this 
model parameterization step, all available peak-state data obtained in non-triaxial
loading paths are considered to help decide an appropriate choice for the J3TYPE
option. Looping over your table (collected in STEP 3) of “all-observed” peak stress 
invariant triplets , especially those at non-triaxial states, 
create a new two-column table of  data pairs, where 

 (A.7)

By comparing a scatter plot of these  data to the graphs in Fig. 4.10, an 
appropriate choice for J3TYPE should be more clear. To assist in the decision, it 
might be easier to instead scale the ordinate as shown in Fig. A.6. By overlaying 
data with the family of plots in Fig. A.6 an appropriate choice for J3TYPE should be 
apparent, as illustrated in Fig.A.7. If non-triaxial data are unavailable (a common 
problem), select J3TYPE=1 if the material is judged to be moderately ductile; 
otherwise, select J3TYPE=3.
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Figure A.6. The Lode function information originally shown in Fig. 4.10 of the main report, now dis-
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to scale the ordinate as shown so that, regardless of the value of , the scaled ordinate equals 1 in TXE 
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J3TYPE=2 would be appropriate for this material. In practice, data at non-triaxial Lode angles are 
rarely available. In this case, the user must resort to engineering judgement to decide which J3TYPE
option to select. 
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APPENDIX A.  Parameterizing the GeoModel
STEP 7.Hardening parameters. In the previous steps, we determined the GeoModel 
parameters that define the outer limit surface. No stress state outside this fixed (non-
evolving) limit surface can be achieved through any load path. Consequently, the 
infinite set of all possible yield surfaces must be contained within this limit 
envelope. Unlike the limit surface, which bounds all possible stress states, the yield 
surface merely bounds the set of elastically obtainable stress states. Unlike the limit 
surface, a yield surface evolves (hardens) through time as a result of microstructural 
changes induced in the material under inelastic loading. The initial yield surface is 
typically much smaller than the limit surface (see Fig. 1.1 in the main text). 
Isotropic hardening permits the initial yield surface to expand on octahedral planes 
(by amounts that vary with pressure) up until the limit surface is reached. Kinematic 
hardening permits the yield surface to translate in stress space until the limit surface 
is reached. Both types of hardening may occur simultaneously.
As a rule, the amount of kinematic hardening relative to total stress is high at lower 
pressures. Therefore, kinematic hardening data are best inferred from unconfined 
compression tests. In the previous parameterization steps, we determined crush 
parameter values , elastic parameters , the limit 
surface parameters , and J3TYPE. Now these values should be 
used in a finite-element (or single cell driver) implementation of the GeoModel, to 
obtain a simulated table of axial stress vs. volume strain to compare with available 
experimental data. The goal is to determine values for the as-yet-unknown
GeoModel parameters through a systematic simulation sequence. As a first guess, 
set the “yet-to-be-determined” GeoModel parameters as follows: 

• offset RN=N=0 (i.e. suppress hardening)
• kinematic hardening parameter HC=1e5
• shape parameter CR=R=10
• plastic potential function parameters for non-associativity A2PF==A2, 

A4PF==A4, RKPF=RK, CRPF=CR (i.e., tentatively assume associativity)
• joint spacing RJS=s=0.0
• rate sensitivity parameters T1 through T7 =0.0 (no rate sensitivity).

Run the finite-element code for unconfined 
compression and output axial stress vs. volumetric 
strain (EVOL). It is unlikely that this result will 
replicate observed unconfined compression data on 
the first try. We ultimately hope to assign values to 
the above parameters so that the volume strain will 
“turn around” as Fig. 8.6(b) (even though axial strain 
increases monotonically, the volume strain turns 
around because of the lateral bulking strains). 

p0 p1 p2, ,( ) b0 b1 b2 g0 g1 g2, , , , ,( )
a1 a2 a3 a4 ψ, , , ,( )

ax
ia

l s
tre

ss

volume strain
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APPENDIX A.  Parameterizing the GeoModel
The phenomenological fitting functions employed in the GeoModel are designed to 
extrapolate reasonably well into regions where data are not available, but these 
functions are also selected in part for computational tractability and they therefore 
serve only as approximations. Consequently, there will certainly be modeling error. 
Ideally, one should use regression fitting procedures to select GeoModel hardening 
parameters that minimize modeling error relative to available data. We have already 
described the programs “HYDROFIT” for regression optimization of the elastic 
parameters and SHEARFIT for finding the limit surface parameters, but no similar 
fitting software has yet been developed to determine the hardening parameters. 
Consequently, for these parameters, a more traditional exploratory manual search 
method must be used as described below.

In the following, we will be exploring adjustments of CR, RN, and HC to try to 
achieve a strain “turn around” at the correct (observed) strain and stress.

If no turn around is apparent in your simulation, try decreasing CR. Continue to 
decrease CR until turn around occurs. If you get no turn around, bring down the 
initial yield surface. The intercept on the ordinate on the meridional profile is 
located at . Try increasing N to a value no larger than  (our initial 

guess of  presumed that the initial yield surface coincided with the shear 
limit surface. By setting N to a nonzero value, we are now permitting kinematic 
hardening). You will likely see “turn around” start to occur.
Next try changing HC. Increasing (say, doubling) HC will increase the strain value 
at which turn-around occurs. Lowering HC lowers the turn-around strain. If you 
continue to have trouble getting turn around, double check that you have correctly 
entered the previously determined (known) parameter values.
If the turn around stress is too high, try lowering HC.

-------------------------------------------
Once shear-induced dilatation (turn-around) has been 
adequately modeled for unconfined TXC, go then to 
high-confinement data. Try changing CR (e.g., from 
7 to 10 if computed peak strain is too large).
----------------------------------
Go back to unconfined, and work on HC and RN.

Continue to go back and forth until you are satisfied 
with both confined and unconfined results.

This concludes our guidance for parameterizing new materials to the GeoModel. Further 
revisions of this manual will likely include additional tips and parameterization experi-
ment suggestions.

J2 a1 a3–= a1 a3–

N 0=

ax
ia

l s
tre

ss

volume strain
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APPENDIX B.  Nomenclature and Data Sets
APPENDIX B.
Nomenclature and Data Sets

This appendix contains three tables defining (1) model parameters, (2) plotable vari-
ables, and (3) other symbols or acronyms used internally within this manual. In each table, 
the first column shows the typeset symbol for the variable. The next column contains the 
ASCII string used for the variable in code input files and/or within the source code. In the 
SI units column, a “1” indicates that the variable is dimensionless. A “–” indicates that 
dimensions vary, while N/A means dimensions are not applicable. The defining equation 
(or page number) in the last column of the tables cites the location in this report where the 
quantity is defined or discussed. 

Reminder: in mechanics, stress and strain are typically taken positive in tension. How-
ever, in applications, they are taken positive in compression. To manage this potentially 
confusing conflict of conventions, recall

          DEFINITION OF THE “OVER-BAR”  (B.1)

For example,  denotes the trace of stress (positive in compression). Therefore,  
is positive in compression.

x x–≡

I1 I 1 I1–≡
B-1



APPENDIX B.  Nomenclature and Data Sets
Model Parameters 
(User Input)

Symbol
or

Acronym

ASCII
Name Name and meaning SI

units
defining 
equation

PROP(1) 
(B0)

Initial elastic bulk modulus (for intact material if model-
ing joints). The tangent bulk modulus is given by 

Pa Eq. 4.9
Eq. A.1

PROP(2) 
(B1)

High pressure coefficient in nonlinear elastic (intact) bulk 
modulus function (see above formula). For linear elastic-
ity, set . For nonlinear elasticity, set  so that the 

Bulk modulus  will asymptote to a value  at high 
pressures.

Pa Eq. 4.9
Eq. A.1

PROP(3) 
(B2)

Curvature parameter in nonlinear elastic (intact) bulk 
modulus function (see above formula). For linear elastic-
ity, set . For nonlinear elasticity, set  to a small 
value to transition rapidly from the low pressure bulk 
modulus to the high pressure modulus. Larger values of 

 will result in a broader transition range.

Pa Eq. 4.9
Eq. A.1

PROP(4) 
(B3)

Coefficient in nonlinear elastic bulk modulus to allow for 
plasticity-induced changes in the elastic properties. To 
neglect this effect, set . When this parameter is 
nonzero, the elastic tangent bulk modulus is computed by 

Pa Eq. 4.33

PROP(5) 
(B4)

Power in nonlinear elastic bulk modulus to allow for plas-
ticity-induced changes in the elastic properties. To neglect 
this effect, set . Otherwise, see above formula.

1 Eq. 4.33

PROP(6) 
(G0)

Initial elastic shear modulus (for intact material if model-
ing joints). The tangent shear modulus is computed by 

Pa Eq. 4.10
Eq. A.3

PROP(7) 
(G1)

Parameter used to define the elastic (intact) shear modulus 
at large shears (see above formula). Specifically, the shear 
modulus will asymptote to a value  as shear 
stress increases. Must be less than 1.0. For linear elastic-
ity, set . For the shear modulus to decrease with 

shearing, set . For the shear modulus to increase

with shearing, set .

1 Eq. 4.10
Eq. A.3

b0

K bo b1
b2
I1
-------– 

 exp+=

b1

b1=0 b1

K b0 b1+

b2

b2 0= b2

b2

b3

b3 0=

K fK bo b1
b2
I1
-------– 

 exp+ b3Exp
b4

εv
p

--------–
 
 
 

–
 
 
 

=

b4

b4 0=

g0

G go
1 g1exp g2J2

1 2/–( )–
1 g1–

------------------------------------------------=

g1

g0 1 g1–( )⁄

g1 0=

0 g1 1< <

g1 0<
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APPENDIX B.  Nomenclature and Data Sets
PROP(8) 
(G2)

Curvature parameter in nonlinear elastic (intact) shear 
modulus function (see above formula). For linear elastic-
ity, set . For nonlinear elasticity small values of  
cause the shear modulus to transition rapidly from its ini-
tial value  to its high shear value . Larger 

values of  make this transition more gradual.

1/Pa Eq. 4.10
Eq. A.3

PROP(9) 
(G3)

Coefficient in nonlinear elastic shear modulus to allow for 
plasticity-induced changes in the elastic properties. To 
neglect this effect, set . When nonzero, the tangent 
shear modulus is computed by 

Pa Eq. 4.34

PROP(10) 
(G4)

Power in nonlinear elastic shear modulus to allow for 
plasticity-induced changes in the elastic properties. To 
neglect this effect, set . Otherwise, see above for-
mula.

1 Eq. 4.34

PROP(11) 
(RJS)

Joint spacing. Set this parameter to zero if the material has 
no geological (or rock-like) faults.

meter

PROP(12) 
(RKS)

Joint shear stiffness. Set this parameter to zero if the mate-
rial has no geological (or rock-like) faults.

Pa

PROP(13) 
(RKN)

Joint normal stiffness. Set this parameter to zero if the 
material has no geological (or rock-like) faults.

Pa

PROP(14) 
(A1)

Constant term in the fitting function for the meridional 

profile, , for the ultimate 

shear limit surface. Here,  and therefore  is 

three times the pressure. At zero pressure, 
 while at high pressure (large ), 

. Thus,  is the vertical intercept of the 

linear asymptote, whereas  is the vertical intercept 
of the limit function itself. These are parameters define the 
ultimate limit curve, at which the maximum possible 
hardening has occurred and softening is imminent. The 
initial onset of yield is described by . 
Thus if fitting to data for yield onset, recognize that the 
constant term will be lower than  by an amount .

Pa Eq. 4.39
Fig. A.4

Symbol
or

Acronym

ASCII
Name Name and meaning SI

units
defining 
equation

g2

g2 0= g2

g0 go 1 g1–( )⁄

g2

g3

g3 0=

G fG go
1 g1exp g2J2

1 2/–( )–
1 g1–

------------------------------------------------ g3Exp
g4

γeqiv
p

-----------–
 
 
 

–

 
 
 
 
 

=

g4

g4 0=

a1
Ff I1( ) a1 a3e a2 I 1–– a4 I 1+=

I 1 trσ
˜̃

–= I 1

Ff I1( ) a1 a3–= I 1

Ff I1( ) a1 a4 I 1+∼ a1

a1 a3–

ff I1( ) Ff I1( ) N–=

a1 N
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APPENDIX B.  Nomenclature and Data Sets
PROP(15) 
(A2)

Curvature decay parameter in the fitting function for the 

meridional profile, . Keep 

in mind that , where  is pressure. Set  
for a linear meridional profile as in Mohr-Coulomb the-
ory. Assign  a large value to quickly asymptote to the 
high-pressure profile slope. 

1/Pa Eq. 4.39
Fig. A.4

PROP(16) 
(A3)

Parameter in the shear limit meridional fit function, 

. 

Eq. 4.39
Fig. A.4

PROP(17) 
(A4)

High-pressure meridional slope parameter in the fit func-

tion, . 

1 Eq. 4.39
Fig. A.4

 PROP(18) 
(P0)

Value of  at the onset of pore collapse for hydrostatic 
compression of virgin material. This parameter will be 
negative because  is negative in compression. In the 

lexicon of traditional -  crush models, this variable 
would equal , where  is the elastic limit pressure 
in hydrostatic compression. In many other publications 
about the GeoModel, this parameter is denoted .

Pa Eq. 4.67
Fig. 4.1

4
Eq. A.2

PROP(19) 
(P1)

One third of the slope of a porosity vs. pressure crush 
curve at the elastic limit. In many other publications about 
the GeoModel, this parameter is denoted .

1/Pa Eq. 4.67
Fig.4.14
Eq. A.2

PROP(20) 
(P2)

Extra fitting parameter for hydrostatic crush curve data, 
used when the crush curve has an inflection point. In 
many other publications about the GeoModel, this param-
eter is denoted .

1/Pa2 Eq. 4.67
Fig. 4.14
Eq. A.2

PROP(21) 
(P3)

Asymptote (limit) value of the absolute value of the plas-
tic volume strain. This parameter is approximately equal 
to the initial porosity in the material and may be inferred 
from hydrostatic crush data. In many other publications 
about the GeoModel, this parameter is denoted .

1 Eq. 4.67
Fig. 4.14
Eq. A.2

Symbol
or

Acronym

ASCII
Name Name and meaning SI

units
defining 
equation

a2
Ff I1( ) a1 a3e a2 I 1––( ) a4 I 1+=

I 1 3p–= p a2 0=

a2

a3
Ff I1( ) a1 a3e a2 I 1––( ) a4 I 1+=

Pa2

a4
Ff I1( ) a1 a3e a2 I 1––( ) a4 I 1+=

p0 I1

I1

p α

3PE– PE

Xo

p1

D1

p2

D2

p3

W
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APPENDIX B.  Nomenclature and Data Sets
PROP(22) 
(CR)

Shape parameter that allows porosity to affect shear 
strength.  equals the eccentricity (width divided by 
height) of the elliptical cap function, so it is the ratio  
(not ) in Fig. 4.15. This parameter affects the stress 
level at which dilatation will occur in triaxial compres-
sion. If dilatation is occurring too soon, increase the value 
of . Decreasing  will decrease the influence of poros-
ity on shear strength and therefore enhance the effect of 
void space creation associated with crack growth. To rep-
licate older classical pore collapse models (which initiate 
pore collapse only at a critical pressure, regardless of the 
level of shear stress), set  to a very small number.

1 Fig. 4.15
Eq. 4.69
pg. A-11

PROP(23) 
(RK)

TXE/TXC (triaxial extension to compression) strength 
ratio. Convexity of the yield surface requires that 

 (or  if using J3TYPE=1). Real 
materials generally satisfy . Future releases of 
the GeoModel will likely allow  to be pressure-depen-
dent.

1 page 45
Fig. 4.4
Eq. A.5

PROP(24) 
(RN)

Off-set parameter. Must be non-negative. Set  to 
suppress kinematic hardening. For problems with kine-

matic hardening, the backstress invariant  will not be 

permitted to grow any larger than . The initial yield sur-
face is defined by , where  
describes the shear limit surface (softening threshold). 
Roughly speaking, the shear strength can increase by an 
amount  before softening will commence.

1 Fig. 4.6
Eq. 4.40
 page 59
pg. A-11

PROP(25) 
(HC)

Kinematic hardening parameter. Set  and  to 
suppress kinematic hardening. Otherwise, this parameter 
affects how “quickly” the yield surface evolves toward the 
ultimate shear failure surface.

Pa Eq. 4.76
pg. A-11

PROP(26) 
(CTI1)

Tensile cut-off in allowable value of the first stress invari-
ant . Value must be positive. If the first invariant (which 
is proportional to the negative of pressure) reaches this 
cut-off value, the isotropic part of the stress is replaced 
with this value. This parameter is available only tempo-
rarily to permit reasonable strength predictions in tension. 
Current enhancements of this model are focused on more 
physically rigorous tensile failure modeling. In principle, 
the yield function should limit achievable values of . 
This option is available if the yield function is not cutting 
off strength at a tensile pressure low enough for the appli-
cation at hand.

Pa

Symbol
or

Acronym

ASCII
Name Name and meaning SI

units
defining 
equation

R
R

a b⁄

A B⁄

R R

R

ψ

1 2⁄ ψ 2≤ ≤ 7 9⁄ ψ 9 7⁄≤ ≤

1 2⁄ ψ 1≤ ≤

ψ

N N 0=

J2
α

N

Ff
initial I1 N,( ) Ff I1( ) N–= Ff

N

H H 0= N 0=

I1
cut

I1

I1
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APPENDIX B.  Nomenclature and Data Sets
— PROP(27) 
(CTPS)

Principal stress tensile cut-off. If a predicted principal 
stress is found to exceed this value, then it is replaced with 
this value. See discussion regarding the state variable 
“CRACK” in the next table.

Pa

PROP(28) 
(T1)

Primary rate dependence parameter. To specify a constant
intrinsic material response time, set this user input equal 
to the characteristic response time. Use the other “T” 
parameters to enable dependence on strain rate and pres-
sure.

sec Eq. 5.22

PROP(29) 
(T2)

Rate dependence parameter. See main text. 1/s Eq. 5.22

PROP(30) 
(T3)

No longer used. Set to zero. 1 Eq. 5.22

PROP(31) 
(T4)

No longer used. Set to zero. 1/s Eq. 5.22

PROP(32) 
(T5)

Rate dependence parameter. See main text. Pa Eq. 5.22

PROP(33) 
(T6)

Rate dependence parameter. See main text. sec Eq. 5.22

PROP(34) 
(T7)

Rate dependence parameter. See main text. 1/Pa Eq. 5.22

— PROP(35) 
(J3TYPE)

Integer-valued control parameter for specifying the 
desired type of -invariant yield surface:
1 - Gudehaus
2 - Willam-Warnke
3 - Mohr-Coulomb

1 page 45
Fig. A.7

PROP(36) 
(A2PF)

Potential function parameter (=A2 for associative). Assign 
this parameter in the same way you would assign a value 
to , except that this parameter is used to generate the 
flow potential surface (i.e., the plastic strain rate will be 
normal to the flow potential surface). Be sure to set  

equal to  if plastic normality is desired.

1/Pa page 48

PROP(37) 
(A4PF)

Potential function parameter (=A4 for associative). Assign 
this parameter in a manner similar to  except that this 
parameter will be used to generate the flow potential. Be 
sure to set  equal to  if plastic normality is desired.

1 page 48

PROP(38) 
(CRPF)

Potential function parameter (=CR for associative). Flow 
potential analog of the yield surface parameter . Be sure 
to set  equal to  if plastic normality is desired.

1 page 48

Symbol
or

Acronym

ASCII
Name Name and meaning SI

units
defining 
equation

T1

T2

T3

T4

T5

T6

T7

3rd

a2
PF

a2

a2
PF

a2

a4
PF

a4

a4
PF a4

RPF

R

RPF R
B-6



APPENDIX B.  Nomenclature and Data Sets
PROP(39) 
(RKPF)

Potential function parameter (=RK for associative). Flow 
potential analog of the yield surface parameter .Be sure 
to set  equal to  if plastic normality is desired.

1 page 48

— PROP(40) 
(SUBX)

Subcycle control parameter. If zero, the GeoModel will 
select an appropriate subcycle step size. If SUBX is non-
zero, then the GeoModel’s default subcycle increment will 
be multiplied by 10**SUBX (ten raised to the power). If, 
for example, you want the code to decrease its subcycle 
size by a factor of 10, then set SUBX=–1. If you want the 
subcycle size altered by a factor “x”, then set SUBX to the 
base ten log of “x”    [ ].

1 —

Symbol
or

Acronym

ASCII
Name Name and meaning SI

units
defining 
equation

ψPF

ψ

ψPF ψ

log10x xln( ) 10ln( )⁄=
B-7
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Internal State Variables
(Plotable Output)

Symbol
or

Acronym

ASCII
Name Name and meaning SI

units

defining 
equation
(or page)

SV(1)
[KAPPA]

ELN
EL

The value of  at which the meridional yield profile first 
branches away from the crack failure surface and begins 
to morph into the cap function associated with porosity. 
Recalling that , the internal state variable  typi-
cally will be negative. As a rule of thumb: increasing the 
user-input parameter  will increase  (and therefore 
decrease ). Recalling Fig. 4.15,  is not the point at 
which the meridional profile has a zero slope — it is the 
branching location. The zero slope point is reached at a 
higher pressure. Isotropic hardening is controlled by the 
evolution of . In the GeoModel physics source code,  
is denoted by ELN or by EL in the subcycling.

Pa Fig. 4.5
Eq. 4.30
Fig. 4.15
Eq. 4.70

— SV(2)
[INDEX]

Indicator for isotropic plastic hardening. This flag will 
equal zero up until the first time isotropic hardening (i.e., 
evolution of the  state variable) occurs. Thereafter, this 
flag will equal 1.0 even if the stress later becomes elastic.

1 page 77

SV(3)
[EQDOT]

 (Frobenius) norm of input strain rate tensor. 

.

1/s page 77

SV(4)
[I1]

First stress invariant (positive in tension). Pa Eq. 3.9
page 77

SV(5)
[ROOTJ2] Square root of the second stress invariant  (always 

positive). This the equivalent shear stress in the material.

Pa Eq. 3.10
Eq. 3.13
page 77

SV(6)
[ALXX]

11 component of the backstress Pa page 58

SV(7)
[ALYY]

22 component of the backstress Pa page 58

SV(8)
[ALZZ]

33 component of the backstress Pa page 58

SV(9)
[ALXY]

12 component of the backstress (= 21 component) Pa page 58

SV(10)
[AXYZ]

23 component of the backstress (= 32 component) Pa page 58

SV(11)
[ALXZ]

31 component of the backstress (= 13 component) Pa page 58

κ I1

κ κ–= κ

R κ

κ κ

κ κ

κ

ε· equiv
L2

ε· equiv ε· ijε
·
ij=

I1

J2 J2

α11

α22

α33

α12

α23

α31
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SV(12)
[GFUN]

Kinematic hardening decay function, equal to 1.0 initially 
and then decays down to 0.0 as the max allowable kine-
matic hardening (determined by the shift parameter ) is 
approached.

1 Eq. 4.79
page 58

SV(13) 
EQP

[EQPS]

Equivalent uniaxial plastic shear strain (conjugate to 

). Specifically, , where  is 

the deviatoric part of the plastic strain rate .

1 Eq. 4.35

SV(14)
[EQPV] Equivalent plastic volume strain: . 1 page 77

SV(15)
[EL0]

Calculated initial value for  (the cap branch value of 

). This is not really an internal state variable. Its value 

will remain constant throughout the calculation. Keep in 
mind:  is typically positive and therefore  is 
typically negative.

Pa Fig. 4.15

SV(16)
[HK]

(Isotropic hardening parameter) Proportionality factor 
appearing in the relationship .

Pa2 Eq. 4.73

SV(17)
[EVOL] Total volume strain, .

1 page 77

SV(18)
[BACKRN]

Square root of the second backstress invariant. This is like 
the equivalent shear stress, except applied to the back-
stress. The value of BACKRN is not permitted to exceed 
the user specified limit value of 

Pa Eq. 4.79

— SV(19)
[CRACK]

Flag that equals 1.0 at the onset of softening whenever the 
maximum tensile cut-off has been applied (or when the 
limit surface is reached). The geomodel simply replaces 
the stress with the cut-off stress (user input CUTPS). Phys-
ically, complete loss in load-carrying ability in the appro-
priate direction is actually desired. However, simply 
replacing the principal stress with zero at the constitutive 
level would result in mesh-dependencies in host codes that 
lack macroscale fracture services. More advanced codes 
should examine the internal state variable flag “CRACK” 
to determine when this cut-off is being applied (and it is 
therefore appropriate to initiate void insertion, element 
death or, preferably, more advanced fracture response).

1 page 77

Symbol
or

Acronym

ASCII
Name Name and meaning SI

units

defining 
equation
(or page)
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N
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p 2 γ
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˜
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˜
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˜
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˜
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p trε
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·
˜

p td∫=
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I1
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εv
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trε
˜̃
· td∫

J2
α
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APPENDIX B.  Nomenclature and Data Sets
— SV(20)
[SHEAR]

Flag equal to 0.0 if the material response is elastic. Other-
wise, if positive, the response is plastic. The value ranges 
from 0.0 if the trial stress rate is tangent to the yield sur-
face to 1.0 if the trial stress rate is normal to the yield sur-
face (i.e., pushing directly against it).

1 Fig. 6.1
page 77

SV(21)
[YIELD]

F

Value of the yield function Pa2 Eq. 4.46

SV(22)
[LODE]

Lode angle in degrees ranging from -30 in triaxial exten-
sion to +30 in triaxial compression. The Lode angle is fre-
quently denoted β in other publications about the 
GeoModel.

deg Eq. 3.40
page 77

SV(23)
[QSSIGXX]

Internal GeoModel variable (quasistatic “low” stress) Pa Eq. 5.10

SV(24)
[QSSIGYY]

Internal GeoModel variable (quasistatic “low” stress) Pa Eq. 5.10

SV(25)
[QSSIGZZ]

Internal GeoModel variable (quasistatic “low” stress) Pa Eq. 5.10

SV(26)
[QSSIGXY]

Internal GeoModel variable (quasistatic “low” stress) Pa Eq. 5.10

SV(27)
[QSSIGYZ]

Internal GeoModel variable (quasistatic “low” stress) Pa Eq. 5.10

SV(28)
[QSSIGZX]

Internal GeoModel variable (quasistatic “low” stress) Pa Eq. 5.10

SV(29)
[DCSP]

Plastic consistency parameter. Eq. 4.55
Eq. 4.83

SV(30)
[QSEL]

Internal GeoModel variable (quasistatic “low” value of 
). In Eq. 5.15,  stands for any internal state variable. 

This is the particular instance for which , which is 
the quasistatic value of the isotropic hardening ISV.

Pa Eq. 5.15

SV(31)
[QSBSXX]

Quasistatic backstress. In Eq. 5.15,  stands for . Pa Eq. 5.15

SV(32)
[QSBSYY]

Quasistatic backstress. In Eq. 5.15,  stands for . Pa Eq. 5.15

SV(33)
[QSBSZZ]

Quasistatic backstress. In Eq. 5.15,  stands for . Pa Eq. 5.15

SV(34)
[QSBSXY]

Quasistatic backstress. In Eq. 5.15,  stands for . Pa Eq. 5.15

SV(35)
[QSBSYZ]

Quasistatic backstress. In Eq. 5.15,  stands for . Pa Eq. 5.15

SV(36)
[QSBSZX]

Quasistatic backstress. In Eq. 5.15,  stands for . Pa Eq. 5.15

Symbol
or

Acronym

ASCII
Name Name and meaning SI

units

defining 
equation
(or page)

f

θ

σ11
L

σ22
L

σ33
L

σ12
L

σ23
L

σ31
L

λ· 1
Pa s⋅
------------

κL
κ qL

qL κL=

α11
L qL αij

L

α22
L qL αij

L

α33
L qL αij

L

α12
L qL αij

L

α23
L qL αij

L

α31
L qL αij

L
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APPENDIX B.  Nomenclature and Data Sets
Other symbols
(used only in this report)

Symbol
or

Acronym

ASCII
Name Name and meaning SI

units

defining 
equation
(or page)

Fourth-order elastic stiffness tensor Pa Eq. 4.4

DELTA Kronecker delta 1 Eq. 2.4

DEIJPL
Deviatoric plastic strain increment = 

1 —

VOLPLAS Plastic volume strain increment = 1 —

DFDSIG Derivative of the plastic potential with respect to stress — —

time s —

DT time increment s —

Young’s modulus Pa Eq. 4.12

The part of the meridional yield profile function associ-
ated with microcracks; 

Pa Fig. 4.6
Eq. 4.29

FF Meridional shear limiter function Pa Eq. 4.39

The part of the meridional yield profile function associ-
ated with porosity; 

1 Fig. 4.5
Eq. 4.29

FC Meridional nominal yield function (Pelessone function) 1 Eq. 4.32
Eq. 4.30

PHI Friction angle (for Mohr-Coulomb theory) 1 Eq. B.3

G Flow potential function Pa2 Eq. 4.55

GAMMAP Octahedral yield shape function (depends on J3TYPE) 1 page 45

, Kinematic hardening modulus tensor Pa Eq. 4.78

HYD Acronym: Hydrostatic loading. The stress is diagonal (no 
shears).

page 13

RI1
First stress invariant, . This is positive in ten-

sion.

Pa Eq. 3.9

Negative of . This is positive in compression Pa Eq. 3.9

Cijkl

δij

∆γij
p

ε· ij
p 1

3
---ε· kkδi j– 

  t∆

∆εv
p

ε· kk
p t∆

t

t∆

E

ff
ff Ff N–=

Ff

fc
fc Fc=

Fc

φ

φ

Γ

Hij
α H

˜̃

I1 I1 trσ
˜̃

=

I 1 I1
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APPENDIX B.  Nomenclature and Data Sets
RJ2
Second stress invariant,  (never negative). 

Geometrically,  equals the magnitude of the stress 
deviator, and it therefore equals the “length” of the projec-
tion of the pseudo stress vector in 3D Haigh-Westergaard 
(stress) space onto the octahedral-plane (i.e.,  is the 
Lode radius).

Pa2 Eq. 3.10

RELJ2ZP Second invariant of the shifted stress Pa2 page 8
Eq. 4.22

RJ3
Third stress invariant, . This is positive when 

the stress deviator is closer to TXE than to TXC.

Pa3 Eq. 3.11

Negative of . This is positive when the stress deviator is 
closer to TXC than to TXE.

Pa3 Eq. 3.11

RELJ3ZP Third invariant of the shifted stress Pa3 page 8
Eq. 4.22

Poisson’s ratio 1 Eq. 4.12

Mean stress, . The mean stress is positive 

in compression. The pressure , which is positive in com-
pression is the negative of the mean stress: .

Pa page 11

Pressure = negative of mean stress, 
Pa page 11

Eq. 3.12

Porosity (unloaded). 1 Eq. 4.65

PONE Code parameter equal to 1.0 1 —

PTWO Code parameter equal to 2.0 1 —

PFOUR Code parameter equal to 4.0 1 —

Polar rotation tensor 1 Eq. 3.39
Eq. 4.3

mass density kg/m3

Stress deviator, Pa Eq. 3.5

The stress tensor. Pa Eq. 3.1

Symbol
or

Acronym

ASCII
Name Name and meaning SI

units

defining 
equation
(or page)

J2 J2
1
2
---trS

˜̃
2=

2J2

2J2

J2
ξ

J3 J3
1
3
---trS

˜̃
3=

J3 J3

J3
ξ

ν

p
p 1

3
---trσ

˜̃
I1
3
----= =

p
p p–=

p
p 1

3
---trσ

˜̃
– I 1

3
------= =

Π

R
˜̃

ρ

S
˜̃

S
˜̃

σ
˜̃

1
3
--- trσ

˜̃
( )I˜̃–=

σ
˜̃
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APPENDIX B.  Nomenclature and Data Sets
SHR Acronym: Shear loading (one principal value of the stress 
deviator is zero and the others are therefore negatives of 
each other). SHR applies even when all principal stresses 
are compressive — all that matters is the nature of the 
stress deviator.

N/A page 18

TXE Acronym: Triaxial extension: Two “lateral” principal 
stresses are equal and the distinct eigenvalue is more ten-
sile than the lateral stresses. A stress state can be in TXE 
even when all principal stresses are compressive — the 
axial stress merely needs to be less compressive than the 
lateral stresses.

N/A page 15

TXC Acronym: Triaxial compression (two “lateral” principal 
stresses are equal and the distinct eigenvalue is more com-
pressive than the lateral stresses)

N/A page 15

The Hill tensor, defined to be the deviatoric part of  and 

therefore given by 

Pa

Plastic tangent stiffness tensor Pa Eq. 4.89

Signed equivalent shear stress, . This 

equals . It is positive when , and negative 

when .

Pa Eq. 3.13

Negative of . This is positive when the stress is closer to 
TXC, and negative when closer to TXE

Pa Eq. 3.4

TAU Characteristic material response time second Eq. 5.4

RLODE Lode angle associated with the shifted stress tensor 
 (  when  is TXC and  

when  is TXE).

radian 
(or deg 
in plot 

output)

Eq. 3.40

SIN3BTAP
Sine of three times the Lode angle 1 Eq. 3.40

ZETA Shifted stress tensor, . When kinematic harden-
ing is activated, the yield surface origin will be at  
instead of at the zero stress origin. The backstress tensor 

 represents the amount by which the origin has trans-
lated.

Pa page 58

Symbol
or

Acronym

ASCII
Name Name and meaning SI

units

defining 
equation
(or page)

T
˜̃ S

˜̃
2

T
˜̃

S
˜̃

2 2
3
---J2I˜̃

–=

Tijkl

τ τ sign J2 J3,[ ]=

J2± J3 0≥

J3 0<

τ τ

τ

θξ

ξ
˜̃

σ
˜̃

α
˜̃

–= θξ 30°= ξ
˜̃

θξ +30°=
ξ
˜̃

3θξsin θξ

ξ
˜̃

ξ
˜̃

σ
˜̃

α
˜̃

–=
ξ
˜̃

0
˜̃

=

α
˜̃
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APPENDIX B.  Nomenclature and Data Sets
Datasets
This section cites parameters for some materials that have already been fit to the Geo-

Model. Datasets undergo continual refinement as additional material data become avail-
able, so consult the model developers to obtain the latest values. This section concludes 
with simplified datasets for mimicking simpler classical theories (Von Mises plasticity, 
Mohr-Coulomb theory, etc.)

NOTE TO ALEGRA USERS: The GeoModel must be run using the “Generic EOS”. 
Appropriate EOS parameters are quoted at the bottom of each dataset.

Dataset for Salem Limestone
$
$ GeoModel parameters for Salem Limestone
$
  B0 = 13.0e9      $Pa
  B1 = 42.47e9     $Pa
  B2 = 0.4107e9    $Pa
  B3 = 12.0e9      $Pa
  B4 = 0.021       $Dimensionless
  G0 = 9.86e9      $Pa
  G1 = 0.0         $Dimensionless
  G2 = 0.0         $1/Pa
  G3 = 0.0         $Pa
  G4 = 0.0         $Dimensionless
  RJS = 0.0        $Meters
  RKS = 0.0        $Pa/Meter
  RKN = 0.0        $Pa/Meter
  A1 = 843.02e6    $Pa
  A2 = 2.731e-10   $1/Pa
  A3 = 821.92e6    $Pa
  A4 = 1.e-10      $Radians
  P0 = -314.4e6    $Pa
  P1 = 1.22e-10    $1/Pa
  P2 = 1.28e-18    $1/Pa^2
  P3 = 0.084       $strain
  CR = 6.0        $Dimensionless
  RK = .72        $Dimensionless
  RN = 12.e6       $Pa
  HC = 100000.e6   $Pa
  CTI1 = 3.e6      $Pa
  CTPS = 1.e6      $Pa
  T1 = 4.e-4       $sec
  T2 = 0.835       $1/sec
  T3 = 0.0         $Dimensionless
  T4 = 0.0         $1/sec
  T5 = 0.0         $Pa
  T6 = 3.0         $sec
  T7 = 0.0         $1/Pa
  J3TYPE = 3      $Dimensionless
  A2PF = 0.0   $$$$$ = zero means A2PF defaults to A2 for normality
  A4PF = 0.0   $$$$$ = zero means A4PF defaults to A4 for normality
  CRPF = 0.0   $$$$$ = zero means CRPF defaults to CR for normality
  RKPF = 0.0   $$$$$ = zero means RKPF defaults to RK for normality
  SUBX = 0.       $Dimensionless

$model 2 generic eos
$ rho ref = 2300.          $ kg/m^3
$ tref = 298.              $ K
$ ref sound speed = 5400.0 $ m/s
$end
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APPENDIX B.  Nomenclature and Data Sets
Dataset for Sidewinder Tuff
$ GeoModel parameters for Sidewinder Tuff

$ Units are SI

  B0 = 4.0e9       $Pa

  B1 = 6.5e9       $Pa

  B2 = 0.1e9       $Pa

  B3 = 0.0         $Pa

  B4 = 0.0         $Dimensionless

  G0 = 3.69e9     $Pa

  G1 = 0.0         $Dimensionless

  G2 = 0.0         $1/Pa

  G3 = 0.0         $Pa

  G4 = 0.0         $Dimensionless

  RJS = 0.0        $Meters

  RKS = 0.0        $Pa/Meter

  RKN = 0.0        $Pa/Meter

  A1 = 496.83e6    $Pa

  A2 = 6.293e-10   $1/Pa

  A3 = 481.08e6    $Pa

  A4 = 1.e-10      $Radians

  P0 = -70.e6      $Pa

  P1 = 1.8e-11     $1/Pa

  P2 = 2.15e-19    $1/Pa^2

  P3 = 0.08        $strain

  CR = 15.0        $Dimensionless

  RK = 0.7         $Dimensionless

  RN = 0.0         $Pa

  HC = 0.0         $Pa

  CTI1 = 3.e6      $Pa

  CTPS = 1.e6      $Pa

  T1 = 0.0         $sec

  T2 = 0.0         $1/sec

  T3 = 0.0         $Dimensionless

  T4 = 0.0         $1/sec

  T5 = 0.0         $Pa

  T6 = 0.0         $sec

  T7 = 0.0         $1/Pa

  J3TYPE = 3       $Dimensionless

  A2PF = 0.0       $$$$$ default = A2 for normality

  A4PF = 0.0       $$$$$ default = A4 for normality

  CRPF = 0.0       $$$$$ default = CR for normality

  RKPF = 0.0       $$$$$ default = RK for normality

$model 2 generic eos

$ rho ref = 1870.           $ kg/m^3

$ tref = 298.               $ K

$ ref sound speed = 2800.0  $m/s

$end
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Dataset for lab scale intact Climax Granite
$ 

$ GeoModel parameters for Lab-scale Intact Climax Granite

$

  B0 = 43.00e9   $Pa

  B1 = 750.0e9   $Pa

  B2 = 100.0e9   $Pa

  B3 = 0.0       $Pa

  B4 = 0.0       $Dimensionless

  G0 = 34.73e9   $Pa

  G1 = 0.0       $Dimensionless

  G2 = 0.0       $Pa

  G3 = 0.0       $Pa

  G4 = 0.0       $Dimensionless

  RJS = 0.0      $Meters (Joint spacing)

  RKS = 0.0      $Pa/Meter (Joint shear stiffness)

  RKN = 0.0      $Pa/Meter

  A1 = 1355.e6   $Pa

  A2 = 3.43e-10  $1/Pa

  A3 = 1328.e6   $Pa

  A4 = 3.82e-2   $Dimensionless

  P0 = -556.e6   $Pa

  P1 = 9.e-14    $1/Pa

  P2 = 0.        $1/Pa^2

  P3 = 0.05      $strain

  CR = 227.5     $Dimensionless

  RK = 0.72      $Dimensionless

  RN = 17.0e6    $Pa

  HC = 150000.e6 $Pa

  CTI1 = 30.e6   $Pa

  CTPS = 10.e6   $Pa

  T1 = 0.0       $sec

  T2 = 0.0       $1/sec

  T3 = 0.0       $Dimensionless

  T4 = 0.0       $1/sec

  T5 = 0.0       $Pa

  T6 = 0.0       $sec

  T7 = 0.0       $1/Pa

  J3TYPE = 3     $dimensionless

$ Flow potential parameters (for associativity, equate with yield parameters)

  A2PF = 0.0     $zero means will default to equal A2 (associative)

  A4PF = 0.0     $zero means will default to equal A4 (associative)

  CRPF = 0.0     $zero means will default to equal CR (associative)

  RKPF = 0.0     $zero means will default to equal RK (associative)

$model 2 generic eos

$ rho ref = 2635          $kg/m^3

$ tref = 298              $ K

$ ref sound speed = 17847 $m/s

$ end
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Dataset for field scale jointed Climax Granite
$ 
$ GeoModel parameters for field-scale JOINTED Climax Granite
$
  B0 = 43.00e9   $Pa
  B1 = 750.0e9   $Pa
  B2 = 100.0e9   $Pa
  B3 = 0.0       $Pa
  B4 = 0.0       $Dimensionless
  G0 = 34.73e9   $Pa
  G1 = 0.0       $Dimensionless
  G2 = 0.0       $Pa
  G3 = 0.0       $Pa
  G4 = 0.0       $Dimensionless
  RJS = 0.06     $Meters (Joint spacing)
  RKS = 8.0e10   $Pa/Meter (Joint shear stiffness)
  RKN = 1.6e11   $Pa/Meter
  A1 = 1379.e6   $Pa
  A2 = 6.51e-11  $1/Pa
  A3 = 1328.e6   $Pa
  A4 = 0.0       $Dimensionless
  P0 = -556.e6   $Pa
  P1 = 9.e-14    $1/Pa
  P2 = 0.        $1/Pa^2
  P3 = 0.05      $strain
  CR = 227.5     $Dimensionless
  RK = 0.80      $Dimensionless
  RN = 17.0e6    $Pa
  HC = 150000.e6 $Pa
  CTI1 = 30.e6   $Pa
  CTPS = 10.e6   $Pa
  T1 = 0.0       $sec
  T2 = 0.0       $1/sec
  T3 = 0.0       $Dimensionless
  T4 = 0.0       $1/sec
  T5 = 0.0       $Pa
  T6 = 0.0       $sec
  T7 = 0.0       $1/Pa
  J3TYPE = 3     $dimensionless
$ Flow potential parameters (for associativity, equate with yield parameters)
  A2PF = 0.0     $zero means will default to equal A2 (associative)
  A4PF = 0.0     $zero means will default to equal A4 (associative)
  CRPF = 0.0     $zero means will default to equal CR (associative)
  RKPF = 0.0     $zero means will default to equal RK (associative)

$model 2 generic eos
$ rho ref = 2635          $kg/m^3
$ tref = 298              $ K
$ ref sound speed = 17847 $m/s
$ end
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Dataset for 23MPa Concrete
  B0 = 5.5e9            $Pa

  B1 = 28.78e9          $Pa

  B2 = 0.623e9          $Pa

  B3 = 0.0              $Pa

  B4 = 0.0              $Dimensionless

  G0 = 1.9026e9         $Pa

  G1 = 0.890513         $Dimensionless

  G2 = 3.55e-9          $1/Pa

  G3 = 0.0              $Pa

  G4 = 0.0              $Dimensionless

  RJS = 0.0             $Meters

  RKS = 0.0             $Pa/m

  RKN = 0.0             $Pa/m

  A1 = 1255.7e6         $Pa

  A2 = 1.93e-10         $1/Pa

  A3 = 1248.2e6         $Pa

  A4 = 0.0              $Radians

  P0 = -1.067e8         $Pa

  P1 = 7.66e-10         $1/Pa

  P2 = 3.88e-20         $1/Pa^2

  P3 = 0.1538           $Dimensionless(strain)

  CR = 10.0             $Dimensionless

  RK = 1.               $Dimensionless

  RN = 3.0e6            $Pa

  HC = 1.0e11           $Pa

  CTI1 = 3e6            $Pa

  CTPS = 1.e6           $Pa

  T1 = 0.0              $Sec

  T2 = 0.0              $1/Sec

  T3 = 0.0              $Dimensionless

  T4 = 0.0              $1/Sec

  T5 = 0.0              $Pa

  T6 = 0.0              $Sec

  T7 = 0.0              $1/Pa

  J3TYPE=3

  A2PF = 0.0 $zero defaults to A2 (associative)

  A4PF = 0.0 $zero defaults to A4 (associative)

  CRPF = 0.0 $zero defaults to CR (associative)

  RKPF = 0.0 $zero defaults to RK (associative)

  SUBX = 0.0

$model 2 generic eos

$ rho ref = 2030.            $ kg/m^3

$ tref = 298.                $ K

$ ref sound speed = 4500.0   $ m/s

$end
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Dataset for Conventional Strength Portland Concrete
  B0 = 1.0954e10        $Pa

  B1 = 0.0              $Pa

  B2 = 0.0              $Pa

  B3 = 0.0              $Pa

  B4 = 0.0              $Dimensionless

  G0 = 7.5434e9         $Pa

  G1 = 0.0              $Dimensionless

  G2 = 0.0              $1/Pa

  G3 = 0.0              $Pa

  G4 = 0.0              $Dimensionless

  RJS = 0.0             $Meters

  RKS = 0.0             $Pa/m

  RKN = 0.0             $Pa/m

  A1 = 4.26455e8        $Pa

  A2 = 7.51e-10         $1/Pa

  A3 = 4.19116e8        $Pa

  A4 = 1.0e-10          $Radians

  P0 = -1.95520e8       $Pa

  P1 = 1.2354e-9        $1/Pa

  P2 = 0.0              $1/Pa^2

  P3 = 0.065714         $Dimensionless(strain)

  CR = 12.0             $Dimensionless

  RK = 1.               $Dimensionless

  RN = 0.0              $Pa

  HC = 0.0              $Pa

  CTI1 = 3.0e6          $Pa

  CTPS = 1.0e6          $Pa

  T1 = 0.0              $Sec

  T2 = 0.0              $1/Sec

  T3 = 0.0              $Dimensionless

  T4 = 0.0              $1/Sec

  T5 = 0.0              $Pa

  T6 = 0.0              $Sec

  T7 = 0.0              $1/Pa

  J3TYPE=3

  A2PF = 0.0 $zero defaults to A2 (associative)

  A4PF = 0.0 $zero defaults to A4 (associative)

  CRPF = 0.0 $zero defaults to CR (associative)

  RKPF = 0.0 $zero defaults to RK (associative)

  SUBX = 0.0

$model 2 generic eos

$ rho ref = 2250. $(kg/cubic meter)

$ tref = 298.

$ ref sound speed = 3056.0

$end
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Datasets for mimicking classical (simplified) models
The GeoModel is truly a unification of many simpler theories. By appropriately setting 
parameters, the GeoModel can be made to exactly replicate results from simpler idealized 
theories, as illustrated below. 

In most finite-element codes, you can modify an existing data set (e.g., one for a real 
material) by simply redefining a material parameter in a separate input line, leaving the 
original value unchanged. By deviating from a correct input set to a “toy” input set in this 
way (rather than over-writing preferred values), you can retain a record of what the mate-
rial parameters should be, thereby mitigating unintentional dissemination of physically 
bad input sets. 

The following specialized input sets use an “aprepro” syntax to show where you need 
to provide values. Specifically, all required or computed values appear in braces {}. Spec-
ify numerical values wherever “VALUE” appears, and then ensure all other values in 
braces are computed as shown (they can be computed by hand or piped into aprepro).
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Von Mises Max stress Max shear (Tresca) Mohr-Coulomb

Figure B.1. Other yield surface shapes supported by the GeoModel.   The grid lines shown on these 
sketches correspond to lines of constant  and constant .z θ

Max
stress

Mohr
CoulombTrescaVon Mises

Figure B.2. Classical simplified yield surfaces in the octahedral plane.   None of these models ade-
quately describes rock failure surfaces, but the failure surfaces for real rocks sometimes share some qual-
itative features with these models, depending on the level of confining pressure. In these figures, the axes 
represent projections of the compressive principal stress axes onto the octahedral plane, taking stress to 
be positive in tension. For the max stress and Mohr-Coulomb models, the size of the octahedral profile 
increases with pressure. For all of these models, the meridional profile is a straight line.
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Von-Mises material. Von Mises theory can be duplicated by using the following sim-
plified set of GeoModel input values:
$
$ GeoModel parameters for replicating non-hardening Von-Mises plasticity
$ All parameters not listed are defaulted to zero.
$ Items in braces must be replaced with numbers
$
A1     = {yield_stress_in_shear = VALUE}
B0     = {linear_elastic_bulk_modulus = VALUE}
G0     = {linear_elastic_shear_modulus = VALUE}

J3TYPE = 1   $Use Gudehaus, which is capable of a circular octhedral profile
RK     = 1   $Set TXE/TXC ratio = 1.0 to make a circlular octahedral profile
P0     = -1.e99   $make yield in hydrostatic compression impossible
CTI1   = 1.e99   $ set pressure cut-off to “infinity”
CTPS   = 1.e99   $ set shear cut-off to “infinity”
CR = 0.001  $ minimize the size of the curved part of the cap
A2 = 0.0
A4 = 0.0
P3 = 0.0
HC=0.0
  T1 = 0.        $sec
  T2 = 0.      $1/sec
  T3 = 0.          $Dimensionless
  T4 = 0.          $1/sec
  T5 = 0.          $Pa
  T6 = 0.          $sec
  T7 = 0.          $1/Pa
RN=0.
P0=-1.e11
A2PF = 0.0
A4PF = 0.0
CRPF = 0.0
RKPF = 0.0

This list presumes that your implementation of the GeoModel sets defaults for unlisted parameters.

Maximum Principal Stress failure. The very simplistic fracture criterion that ini-
tiates failure when the largest principal stress reaches a critical value can be modeled in 
the GeoModel by using the following parameter set:
$ GeoModel parameters for duplicating a maximum principal stress criterion
$
${max_allowed_principal_stress = VALUE}
B0 = {VALUE}    $bulk modulus
G0 = {VALUE}    $shear_modulus
P0 = -1.e99     $ turn off the cap function
J3TYPE=3
A1={SQRT(3)*max_allowed_principal_stress}
A4={1/SQRT(3.0)}
RK = 0.5
A4PF = {1/SQRT(3.0)}
RKPF = 0.5

This list presumes that your implementation of the GeoModel sets defaults for unlisted parameters.
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Tresca. The simplistic criterion that a material fails when its largest shear stress reaches 
a critical value can be modeled by using the following GeoModel parameters:
$ User must specify values in braces
B0 = {bulk_modulus}
G0 = {shear_modulus}
P0 = -1.e99     $ turn off the cap function
J3TYPE=3
A1={2.0**yield_stress_in_shear/sqrt(3.0)}
RK = 1.0
RKPF = 1.0

This list presumes that your implementation of the GeoModel sets defaults for unlisted parameters.

Mohr-Coulomb. 
Classical Mohr-Coulomb theory for brit-

tle failure can be derived from an idealization 
that the material contains a large population 
of equal sized cracks. Being all the same size, 
any given crack loaded in pure shear will fail 
(grow) if the resolved shear stress  on the 
crack face exceeds a critical threshold value 

. If a crack face is additionally subjected to 
a normal compressive stress , then the 
applied shear  needed to induce crack 
growth must be larger than  by an amount 

, where  is the coefficient of 
friction. Stated differently, a given crack is 
safe from failure if

,  (B.2)

or, recalling that , 

,        where      (B.3)

This criterion must be satisfied by all cracks in the material. Since Mohr-Coulomb theory 
arises from an idealization that the material contains a large population of cracks (uni-
formly random in orientation), a material is safe from failure under general stress states 
only if all points on the Mohr’s diagram for the stress fall below the “failure line” defined 
by . Failure is therefore deemed to occur when the outer Mohr’s circle 
first “kisses” the failure line. Working out the geometry of Fig. B.3, a circle of radius , 
centered at , will be tangent to the failure line if and only if

 (B.4)

For the outer Mohr’s circle, 

τ

σN

failure line

S0 φ

Figure B.3. A stress at the limit state 
under Mohr-Coulomb theory. 
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        and           (B.5)

or, removing the overbars (defined such that ),

        and           (B.6)

Substituting these into Eq. (B.4) gives

 (B.7)

This is the Mohr-Coulomb failure criterion cast in terms of principal stresses. Eqs. (3.43a) 
and (3.43c) on page 24 of the main report imply 

 (B.8a)

.  (B.9b)

Therefore, the stress invariant version of Eq. (B.7) is

,  (B.10)

or, solving for ,

.  (B.11)

Recall from Eq. (4.39) that the GeoModel’s limit function  fits the triaxial compression 
(TXC) meridional profile to the following functional form

    in TXC ( )  (B.12)

In triaxial compression (TXC), the Lode angle is  so that

             and                (B.13)

Therefore, Eq. (B.11) specializes to TXC loading as

 (Mohr-Coulomb in TXC)  (B.14)

Being careful to note that , comparing this result with Eq. (B.12) implies that 
the GeoModel limit surface parameters for Mohr-Coulomb theory should be set as
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 (B.15a)

 (B.15b)

 (B.15c)

 (B.15d)

Therefore, the general Mohr-Coulomb criterion in Eq. (B.11) may be written in the form 
required for the GeoModel as

,  

where ,         

and  (B.16)

Naturally, J3TYPE=3 is appropriate. Moreover, to make the cap function  equal to 1, 
the cap and crush curve features should be disabled as described on page B-26. Classical 
Mohr-Coulomb theory is meant to apply to brittle rupture, so kinematic hardening should 
be disabled as described on page B-26. An appropriate value for the TXE/TXC strength 
ratio  must be determined by evaluating Eq. (B.11) in TXE where :

 (Mohr-Coulomb in TXE)  (B.17)

The TXE/TXC strength ratio is then given by the ratio of the right-hand sides of 
Eqs. (B.17) and (B.14):

 (B.18)

For this classical Mohr-Coulomb theory, the slope of the TXC meridional profile, 
, equals . Therefore,  may be eliminated from Eqs. (B.15d) and (B.18) to 

reveal that the TXE/TXC strength ratio is coupled to the slope of the TXC meridional pro-
file according to

,     where       (B.19)

This relationship will be explored in future releases of the GeoModel for allowing pres-
sure dependence of the octahedral profile shape when (unlike Mohr-Coulomb theory) the 
meridional profile has a non-constant slope.
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Below, we show the skeleton required for setting the GeoModel inputs to run classical 
Mohr-Coulomb theory. This input set also shows how to set parameters if you wish to run 
with non-associativity (where the flow potential function differs from the yield function 
only by having a different value for ). Values for  and for  are 
set by using Eq. (B.15). Values for  and  are set by using Eq. (B.18). 

$ GeoModel parameters for duplicating a classical Mohr-Coulomb material

$ in BOTH the octahedral and meridional profiles. 

$

$ Replace every occurance of “VALUE” in this file with the appropriate

$ Mohr-Coulomb parameter. You may generate GeoModel input values for the 

$ by using the command ‘aprepro this_file output_file’. Preferably, if

$ your finite element code supports embedded aprepro directives, then

$ drop this file DIRECTLY into your finite element GeoModel input block.

$

$ {friction_angle = VALUE}     $angle “phi” in GeoModel Appendix B

$ {dilation_angle = VALUE}     $for associativity, this equals “phi”

$

$ {cohesion = VALUE}           $parameter “S_sub0” in GeoModel Appendix B

$                              $This equals yield stress in simple shear.

$ Let Aprepro compute some helper quantities

$ {scalef = 2.0*sqrt(3)/(3.0-sin(friction_angle))}

$ {scaleg = 2.0*sqrt(3)/(3.0-sin(dilation_angle))}

$ 

B0 = {VALUE} $bulk modulus

G0 = {VALUE} $shear modulus

J3TYPE=3

A1 = {scalef*cohesion*cos(friction_angle)}

A2 = 0.0

A3 = 0.0

A4 = {scalef*sin(friction_angle)/3.0}

RK = {(3.0-sin(friction_angle))/(3.0+sin(friction_angle))}

A1PF = {scaleg*cohesion*cos(dilation_angle)}

A4PF = {scaleg*sin(dilation_angle)/3.0}

RKPF = {(3.0-sin(dilation_angle))/(3.0+sin(dilation_angle))}

P0 = -1.e99     $ turn off the cap and crush-curve features

P1 = 0.0        $ no cap

P2 = 0.0        $ no cap

P3 = 0.0        $ zero porosity

CR = 0.001      $ prevent cap influence on shear response

CRPF = 0.001    $ prevent cap influence on shear response

HC = 0.0        $ disable kinematic hardening

RN = 0.0        $ disable kinematic hardening

This list presumes that your implementation of the GeoModel sets defaults for unlisted parameters.

φ a1 a2 a3 a4, , ,( ) a2
PF a4

PF,( )
ψ ψPF
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To conclude this appendix, sub-input sets are summarized for controlling various fea-
tures of the GeoModel.

Sub-input set for linear elasticity. 
B1 = 0.0
B2 = 0.0
B3 = 0.0
B4 = 0.0
G1 = 0.0
G2 = 0.0
G3 = 0.0
G4 = 0.0

Set B0  to the constant bulk modulus and set G0  to the constant shear modulus. To additionally disable any form of plas-
ticity, set A1 to a very large number and disable cut-offs as well as the cap and crush curve as described below.

Sub-input set for “turning off” all rate dependence. 
T1 = 0.0
T2 = 0.0
T3 = 0.0
T4 = 0.0
T5 = 0.0
T6 = 0.0
T7 = 0.0

For LINEAR rate dependence, set T1 to the material’s characteristic response time and all other T parameters to zero.

Sub-input set for disabling kinematic hardening. 
HC=0.0
RN=0.0

Sub-input set for associativity. 
CRPF=0.0
RKPF=0.0
A2PF=0.0
A4PF=0.0
This list presumes that your implementation of the GeoModel sets defaults for unlisted parameters. If not, associativity 
requires that all parameters that end in “PF” be set equal to their yield parameter counterparts.

Sub-input set for disabling cap and crush curve. 
P0     = -1.e99   $put the cap at infinity
P1 = 0.0
P2 = 0.0
P3 = 0.0          $set porosity to zero
CR = 0.001        $ minimize the size of the curved part of the cap

This list presumes that your implementation of the GeoModel sets defaults for unlisted parameters. The GeoModel user-
input processor and initializer will recognize these inputs as “cap disablers” and adjust the model appropriately.

Sub-input set for disabling tensile cut-off limits. 
CTI1   = 1.e99   $ set pressure (I1) cut-off to “infinity”
CTPS   = 1.e99   $ set principal stress cut-off to “infinity”

This list presumes that your implementation of the GeoModel sets defaults for unlisted parameters.
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