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Kinematics:
The mathematics of deformation

1. What is deformation?

Let O, denote the initial configuration of a physical body (e.g., an airplane part, a
blob of putty, etc.). Let X denote the initial position of a point in the body. Disallowing
fracture (where some particles “break” into two independent particles), each point in a
body can have one and only one initial (pre-deformation) location, so the initial position
vector, X, can be regarded as a unique “name” of any particular particle of interest.

Let QO denote the configuration of the body after deformation. In general, each mate-
rial particle X moves to a new location, x, and no two distinct particles are allowed to
deform into the same location.

The drawing below shows a pseudo 2D deformation in which a square grid has been
conceptually “painted” onto the material. We havefilled in afew of the material elements
(grid cells) with solid color to help uslater. Of course, since the out-of-plane thickness has
changed (by about 50% from the looks of it), this deformation is actually three-dimen-
sional. A pseudo 2D deformation has out-of-plane thickness changes, but no out-of-plane
shearing; motion is characterized principally with respect to the two in-plane coordinates.

Figure 1.1. A general 2D deformation. A dlice of putty is deformed into a new configurationin
pseudo two-dimensional manner. The cross-section and the out-of plane length change arbitrarily, but no
out-of-plane shearing is allowed. In this sketch, a grid has been conceptually “painted” onto the material
to facilitate visualizing the deformation.
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Most of the concepts in this document will be illustrated in the context of pseudo 2D
deformations, but they apply equally well to general deformations in which material ele-
ments can shear and rotate in arbitrary directions.

Deformation

Since each particle occupies its own unique
location in space in both the initial and deformed
configurations, we may assert that there exists a
one-to-one function y (called a mapping function)
such that

Material )
interpenetration?

Nonphysical!

X = x(X) (1.1)

Examples of mapping functions are given in Section
5. Naturally, no single material element (i.e., no grid Figure1.2. A locally admissible, but
cell in Fig. 1.1) should be permitted to “invert.” This 910Pally inadmissble deformation.
constraint is called “local admissibility” of the deformation, and it is ensured if the
matrix [OX;/ axj] has a positive determinant. In finite element simulations, a technique
called “hourglass control” is typically used to ensure local admissibility. However, local
admissibility is not sufficient to guarantee “global admissibility,” which requires that
the mapping function in Eq. (1.1) be invertible and therefore prohibits material interpene-
tration. Figure 1.2, for example, shows a globally inadmissible deformation that is every-
where locally admissible. In computational mechanics, “contact algorithms” must be used
to avoid material the globally inadmissible phenomenon of material interpenetration.
Later on, after we define the deformation gradient tensor, E , whose ij components are
given by [0x;/ 0X]. Occasiondly, problems in mechanics involve specification only of
how the E tensor varies in space without making explicit reference to the mapping func-
tion, X = y(X). In these problems, another admissibility condition (called the compati-
bility condition) requires that at least the mapping function must exist — the £ tensor
field must be integrable even if we choose not to integrate it.

Displacement
Thedisplacement of aparticleisavector extending from aparticle’sinitial location
to its deformed location (see Fig. 1.1):

usx—-X (1.2)

~ ~ '~
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The initial and final position vectors, x and X, are origin-dependent (they depend on
where you place the origin). The displacement vector u isafree vector — it won’'t change
if you move the origin. The definitions of positions and displacement can be generalized
to permit different origins to be used in the initial and deformed configurations. If the
deformed origin is located by extending a vector ¢ from the initial origin, then x in the
above expressions must be replaced by ¢ + x . The origin-to-origin vector ¢ does not vary
with position — it is spatially constant.

2. The deformation gradient

The deformation gradient tensor (graphical introduction)

GOAL: Provide a physical understanding of the deformation gradient tensor prior to defining
it mathematically.

The sketch of deformation (Fig. 1.1) shows a square grid conceptually “painted” onto
the undeformed body, and some of the grid cells have been filled in with solid color to
help us better visualize the deformation. Note that each little material square deformsto a
shape that is close to a paralelogram in shape. This approximation (squares-to-parallelo-
grams) becomes exact in the limit of an infinitely refined grid. In three dimensions, cubes
deform into parallelepipeds. On surfaces embedded in 3D space, infinitesimal squares
deform into infinitessmal parallelograms. The deformation gradient is a tensor that quanti-
fies both the 3D and 2D shape change as well as overall material rotation, making it supe-
rior to strain as an all-encompassing measure of deformation of material elements. If you
have the deformation gradient tensor, then you can compute the strain; the converse is not
true. The purpose of this section is to describe how to graphically approximate the defor-
mation gradient tensor by simply looking at the deformation. We will postpone giving an
exact mathematical definition of the deformation gradient tensor.

Any cube can be characterized by the three orthonormal vectors that form its edges.
Likewise, the deformed parallelepiped can be characterized by the three vectors that form
its edges. The deformation gradient tensor E quantifies the changes in these edge vectors
by assembling the three deformed edge vectors into columns of a 3 x 3 matrix of compo-
nents. For rectangular Cartesian coordinate systems, the columns of the deformation gra-
dient’'s component matrix contain the deformed parallelepiped edge vectors, expressed
relative to the undeformed edge vectors that defined theinitial cube. By relative, we mean
that all length changes are expressed as multiples of the initial cube’s edge lengths, and all
directions are expressed relative to the initial cube's edge directions. Consequently (by
appropriately defining our unit of length) we may pretend that the initial infinitessmal
cube is a unit cube whose three edge vectors are aligned with the orthonormal “labora-
tory” basis, (E,,E, E;} . Upon deformation, these edge vectors deform into a new set of
vectors, {g,, 9., 9}, that define the edges of the deformed parallelepiped. If you find the
lab components of the ith deformed edge vector and assemble those components into the
ith column of E, then the result will be the component matrix for E with respect to the
{E4, E, E3} (lab) basis. Mathematically, this means that
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9= E*E (2.1)
or, equivalently,
9 = FiEj | 2.2)

where F;, arethe jk components of E with respect to the lab basis.* The k™' column of
[Fjil contains the lab components of g, . These equations provide us with a method for
approximating the local deformation gradient at a point whenever we have accurate pic-
tures of the deformed cube (or, for 2D, the deformed square).

The deformed g, edge vectors are not generally orthogonal or of unit length. They are
called “material vectors’ because they “travel along” with the same set of material points
(rotating with and stretching in proportion to the grid lines). In general, if M is amaterial
vector in theinitial configuration (not necessarily of unit length), then it will flow with the
material to become a new (stretched and rotated) vector m in the deformed configuration,
given by

m = E e M |, and the“fiber stretch” isdefined] » = ||m||/[|M]| | (2.3)

~

Thus, if the E tensor is constructed from knowledge of how the unit lab base vectors
would flow with material at a point, then you can immediately compute how any material
vector (not necessarily aligned with the lab basis and not necessarily of unit length) would
flow with the material. This is the fundamental characteristic of alinear transformation.
We will explain later that Fij = 0x/0X;. The mapping function x = x(X) is generally
nonlinear, but its derivative at a point is linear with respect to small changes in position.
This statement is analogous to what a freshman calculus student encounters when first
introduced to the concept of differentiation. A function y = f(x) might be nonlinear, but
one can always (for smooth functions) define a straight (i.e., linear) line that is tangent to
the curve at any point and the slope of thelineisgiven by dy/dx. The deformation gradi-
ent tensor, Fy; = 0x;/0X;, plays arole in three dimensions that is analogous to the tan-
gent slope dy/dx in one dimension. The difficulty liesin visualization. In one dimension,
we can always plot the function y = f(x) and then show the tangent line on the graph. In
three dimensions, we must understand the mapping function x = x(X) inamore abstract
manner by talking about what it does (locally) to little cubes of material. Our perspective

* Comparing Egs. (2.1) and (2.2), you might (wrongly) think that we should have written Fy; instead
of Fik in EQ. (2.2). To see why Eq. EQ. (2.2) is correct, note that any vector v may be expressed in
terms of thelab basisas y = v,E, , where v, = v E, . Stated differently, any vector y may be writ-
teny = (ve E E,, or, sincethe dot product iscommutative, v = (E, » v)E, . Thisidentity applies
for any vector v. Applying it to one of the stretched edge vectors, g, , gives g, = (E; » g,)E;, Or,
substituting Eq. (2.1), g, = F, E;, Where F;, = E;eE E,.
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here would be analogous to describing the 1D mapping y = f(x) by stating that a little
line segment dx deforms into a new line segment dy that differs in length by a ratio
s = dy/dx so that dy = sdx. For generaization into 3D mapping, this last equation
becomes dx = F e dX.

Before refining this loose mathematical discussion, let’s spend some time constructing
some deformation gradient tensors graphically. What we will be doing here is analogous
to taking out a ruler and estimating the local slope of a 1D curve y = f(x) by measuring
local “rise over run.”

EXAMPLES

Consider the top material element sketched in Fig. 2.1. Zooming in on the undeformed
and deformed shapes of these elements, and introducing a “ruler” for which the initial
cube has unit length gives the following drawing:

g, = 1.78E, + 127,

E2

Undeformed

Eq

§|||I|||||||||||||||||||I||| %|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Figure 2.1. A graphical determination of the deformation gradient This sketch shows azoomed in
picture of the small material element at the top of Figure 1.1 on page 1. A “ruler” has been drawn on this
figure so that the undeformed square is a unit square.

Using the rulers as aguide, we can “read off” the components of each of the deformed
edge vectorsto obtain:

S {—(1):25} ad  {g,} = {i;ﬁ} (2.4)
Assembling these componentsinto columns of a 2 x 2 matrix gives

== Léf)s i;ﬂ (2:5)
The fiber stretches are

b= ||9y|/|[E4| = 13 and A, = ||9,|/[|Ed| = 22 2.6)

which mean that an infinitesmal fiber originally aligned with E; will, after deformation,
have alength 1.3 times as large. A fiber originally aligned with E., will change length by
afactor of 2.2.
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The deformation in Fig. 1.1 isactually three dimensiona — the out-of-plane thickness
has increased by about 50%, which corresponds to an out-of-plane stretch (L/L,) equal
to 1.5. Consequently, the E, base vector has deformed to become g, = 1.5E;. Conse-
guently, the pseudo 2D deformatlon gradient in Eq. (2.5) can be* upgraded” to 3D as

13 178 0
[E] = |-0.051.27 0 2.7)
0 0 15
If we zoom in on the middle element in our original sketch and graphically measure the

deformed material element edge vectors, then the deformation gradient is found as fol-
lows:

= 3 g, = 15E,

€ 3

g g Deformed

EI Undeformed EI

= 2 = BN
san MAAANnn it sail NN T
Component arrays:

_ )1 _J0 _|10
%=1 % = {1 =15y

Figure 2.2. A graphical approximation of the local deformation gradient Thisfigure
shows an enlarged picture of the middle material element shown in Figure 1.1 on page 1. This
material element happensto bein a state of uniaxial strain in the 2-direction.
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Finally, the material element in the lower left of Figure1.1 on pagel is deformed
according to a deformation gradient approximated graphically as follows:

Ei Ez 5592 = 0'451-'-52

EE Undeformed EE Deformed

= B, = 975

=1 MAANnnn i =an MNANNNAN AN fnnnnnn |

Component arrays:

_ 1 _ J04 _|104

Figure 2.3. Graphical determination of the deformation gradient for the bottom element in Fig. 1.1

This material element coincidentally appearsto be in a state of pure shear.
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Physically interpreting a deformation gradient tensor

Consider the inverse problem: suppose you know the deformation gradient (e.g., as
output from a structural mechanics finite element code), and you wish to visualize the
nature of the deformation by sketching the material element. The process is simple. Just
interpret the i™ column of [E] to contain the lab components of the deformed edge vec-
tors, and then draw the deformed element accordingly. Suppose, for example, that you are
given

1
[E]1= 2 (2.8)
1

{g,} = {1_/12} and {g,} = {12} (2.9)
= = _ .
= =2 E g, = 28,36
E: Undeformed E:
= S G
ssaih AR AN A ssathl MAAAANAN AN innnn

Figure 2.4. Sketching the deformation when the deformation gradient is known This deformation cor-
responds to the deformation gradient in Eq. (2.8).

Being only a collection of four numbers, the deformation gradient matrix in Eq. (2.9)
does not have much obvious physical meaning by itself. But, by drawing the associated
deformation, we can now see that this deformation is essentially a movement of the mate-
rial consisting of stretching it in the 2-direction, then shearing it in the 1-direction, and
finally rotating it clockwise.
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Sequentially applied deformations

Suppose that some total deformation E is achieved viatwo separate deformation phases,
the first being defined by one deformation gradient tensor E(1) and the next defined by
F(2. At the end of the first phase, a material vector M will stretch and rotate into a new
vector

mintermediate — E(l) oM (2.10)
At the end of the second phase, this vector will become
m = F(2 e mintemediate = £(2) ¢ E(1) o || (2.11)

Thus, the overall final deformation gradient tensor is

E = E(Z).E(l) (2.12)

~

Note that the tensors are multiplied in reverse order of application. Changing the order of
application will result in a different material deformation (See Fig. 2.5).

stretch then rotate
horizontally 45 degrees
then stretch
rotate horizontally
45 degrees
Figure 2.5. [llustration that order of application matters!
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Tracking volume changes

A volume element in the undeformed configuration can be defined by the parallelepi-
ped formed by of any three (infinitesimal) material edge vectors, {M,, M,, M5} . The
undeformed volume of this infinitesimal material element is given by the triple scalar
product:

Vo = [M, M), Mj] (2.13)
The initial material vectors each stretch and rotate, becoming new deformed vectors,
{m,, m,, M5}, that define the deformed shape of the material element. The deformed vol-
umeisgiven by

V = [my, My, Ms] (2.14)
or, notingthat m, = F e M,

V=[EeM,EeM,FE eMj] (2.15)

~ ~

Expanding this out in indicial notation and using the definition of a determinant reveals
that

7 ~

= (detE)[M, M,, M3 = detEV,, (2.16)

or

A detE (2.17)
\V

[0}
where J iscalled the“Jacobian” of the deformation, defined by

J = det

2Tl

(2.18)

In words, the determinant of the deformation gradient tensor equals the ratio of the
deformed to the undeformed infinitesimal volume elements. For realistic deformations,
both volume elements must be positive. Therefore, we may assert that

J>0 (2.19)

Therefore, the deformation gradient tensor must be invertible. This is the mathematical
statement of local admissibility, discussed on page 2.

Tracking surfaces

The g, vectors move with the material. They always lie along the same set of points
(more correctly, they’re always tangent to and stretch with the grid lines). In three dimen-
sions, thetriad {g,, 9., 9,} formsthe edges of a parallelepiped that defines the deformed
shape of the material element Upon deformation, a face of the parallelepiped is defined
by the two material edge vectors that form that face. If, for example, we consider the face
formed by g, and g, then the normal to this faceis proportional to g, x g,

10
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Even though the edge vectors move with the material, the outward normals to planes
do not move with the material. Consider the deformation shown in Fig. 2.4, for which the
deformation gradient is

.
[E]1=12 (2.20)

-1 -4

4

To extend this example to three dimensions (so that we can talk about planes), let’s sup-
pose that the deformation is actually that of athick plate (no stretching occurs in the out-
of-plane direction), so the 3D deformation gradient is

1
520

[El=1]4_19 (2.21)
0 01

We have already explained that g, comes from the kth column of E, which means

9, = E*Ey (2.22)

=

Now we introduce complementary vectors v, defined by

v, = ETTeE; (2.23)
Note that
Vi® g, = Ok (2.24)

Incidentally, because the vector v. obeys Eq. (2.24), it is called the “dual” or “contravari-
ant” vector associated with g, and in publications that employ convected coordinates, the
vector v, istypically denoted g' (which is distinguished from g. because it uses a super-
script rther than a subscript). We will continue to use the symbol v; for the dual vector.

Suppose, for example, v, is perpendicular to both g, and g,; hence, it must be per-
pendicular to the material surface formed by g, and g,. As far as the normal goes, the
magnitude of v is inconsequential and may be chosen for computational convenience.
Specifically, our definition in Eq. (2.23) corresponds to

(9,95
Y= g where 0,=0# (9, % gy) (225)
(0]

In three dimensions

-140

T = £

[E71= 15820 (2.26)
001
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The columns of this matrix contain the lab components of the y, vectors, sketched in Fig.
2.6. This picture shows quite clearly that normals to material planes are not material vec-
tors — the don’t flow with the material.

N,
S =
= Ny E “2
= Undeformed  p—
= = —
sxail YRR A AR At sain MAAAAANANT AN AN m |

Figure 2.6. Tracking material surfaces This deformation corresponds to the deformation gradient in
Eq. (2.8). The deformed edges are coincident with g, = E o E; outward normalsto the material surfaces
areparalel to v, = ETeE,.

In general, if amaterial plane (i.e., one that moves with the material) hasanorma N (not
required to be of unit length) in the undeformed configuration, then after deformation, the
vector

v=FETeN (2.27)

(again not generally of unit length) will be normal to the plane in the deformed configura-
tion. If the unit normal is desired, then this result can ssmply be normalized.
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Area vectors

Let M; and M, be any two material vectors in the undeformed configuration. The
area of the parallelogram formed by these two vectors is given by

A, = M xM, (2.28)

If the materia vectors are infinitesimal, then this area vector will be infinitesimal. Upon
deformation, the M, vectors deform into new stretched and rotated vectors, m, and m,,
that define a new area vector

A=m;xm, (2.29)

~

Substituting Eqg. (2.3) into this expression gives
A= (EeM)x(EeM,) (2.30)
Using an identity from tensor analysis, this result can be written as

A= ECe(M;xM),) (2.3

or

A=

2Tl

Co A, (2.32)

where E€ is the cofactor of E . Since the deformation gradient is invertible, the cofactor
may be alternatively written

Tl

¢ = (det

Tl

)E_T (2.33)

Recallingthat J = detE and also recalling that M, x M, isjust the undeformed area vec-
tor, A, Eg. (2.32) may be written

~O!

~

A =JETeA, (2.34)

Thisfamous result is called “Nanson's relation.”
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Deformation gradient (precise mathematical definition)

So far, we have described a graphical method of approximating the deformation gradi-
ent. Namely, you can “paint” a small square in the material, and then construct the defor-
mation gradient by assembling the deformed material vectors into columns of [E]. Now
we will provide the quantitative definition of the deformation gradient. The deformation
gradient is defined such that an infinitesimal material line segment dX deformsinto a new
infinitesimal line segment dx so that

dx = F edX (2.35)

or, by the chain rule,

(2.36)

Tl

1
oo
154 |1><

This conclusion holds because (recall) the deformation can be described through a map-
ping:
X = x(X) (2.37)

In arectangular Cartesian coordinate system, the components of the deformation gradient
tensor are

E _0X

= - 2.38
i 7 X (2:39

In matrix form,

( _axl 0xq 8x1_ \
00X, 0Xy 0Xg
00Xy OXy 0Xy
0X; 0Xy 0Xg
0X3 O0X3 OX3

|0X; 8X, Xy
\_ _/

Examples may be found starting on page 38.

(2.39)

Homogenous deformations

We have described the deformation gradient tensor in the context of inhomogenous
deformations. Referring to the definition in Eq. (2.38), note that the deformation gradient
tensor itself generally varies with position. Consequently, the deformation of oneinfinites-
imal material cubes generally will be different from that of another cube located elsewhere
in the body.
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A homogenous deformation is a very special kind of deformation in which the
deformation gradient has the same value everywhere in the body. In this case, Eq. (2.36)
can be integrated to give the mapping function,

X =FEeX+C, (2.40)

where C is a constant of integration representing material transation. For homogenous
deformations, straight lines deform to straight lines, planes deform to planes, cubes (no
matter how large) deform to parallelepipeds, and spheres deform to ellipsoids. Contrast
this with an inhomogenous deformation such as the one illustrated in Fig. 1.1, where orig-
inally straight grid lines become curved and only infinitesimal cubes deform to parallel-
epipeds. These distinctions areillustrated in Fig. 2.7.
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Rotation

General inhomogenous
Homogeneous Defor mation
Deformatl\(l)n

Figure 2.7. Distinctions between pure rotation, homogenous deformation and inhomogenous de-
formation.
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Constructing the deformation gradient using dyads

In the previous example, we considered only the deformation of material fibers that
were initially aligned with the lab basis. Thisis the easiest way to construct the deforma-
tion gradient tensor. If however, you start with three linearly independent material fibers
{M, M,, M5} (thistime not necessarily of unit length) in the undeformed direction, then
the procedure for constructing the deformation gradient must be modified. These concepts
are useful in experimental diagnostics. For example, application to strain rosettes is dis-
cussed at the end of this section.

Method 1: You can assemble the lab components of the {M,, M,, M3} vectorsinto col-
umns of amatrix f sothat
=0

M, = ZO o E,. (2.41)

If these vectors become {m,, m,, m5} in the deformed configuration, then you can
likewise assemble their lab components into a second matrix f so that

— I. Ek' (2.42)

We seek the deformation gradient tensor that connects the initial and final configuration
directly. In other words, we seek atensor E such that

m, = EeM,. (2.43)

Solving Eq. (2.41) for E, gives E, = f ~1 e M, . Substituting this result into Eq. (2.42)
gives

~

=fe fc—)l ° |\/|k (2.44)

Comparing Eqg. (2.43) with EQ. (2.44) tells us that

E="e f;l (2.45)

Method 2: Another way to achieve the same result is to employ dyads and dual bases.
Again, let {M,, M,, M5} denote three linearly independent infinitesimal material vectors
in the undeformed 3D configuration. Let {y,, u,, 1.} bethe associated dual (or “contrar
variant”) vectors. That is,

M, x M, Msx M, M, xM,
T T Vit Tl vaant
M, M, M,
where M = (M; x M,) e M, (2.46)

If the material line segments {M,, M,, M5} deform to become new line segments
{m,, m,, M3}, then the deformation gradient tensor may be constructed by
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3
F = Z m®p, (2.47)

Here, the symbol ® denotes dyadic multiplication. For any two vectors a and b, the
dyad, a® b, isasecond order tensor whose ij component equals &, bj .

Eq. (2.45) and Eq. (2.47) will both give the same result.

Example: Suppose that a mounting bracket for the landing gear on an airplane was pho-
tographed during the most recent inspection of the plane. Following an unusually rough
landing, a new photograph revealed that the bracket had undergone some severe deforma-
tion as shown in Fig. 2.8. We will use the lines formed by the “ACME landers’ company
logo to determine the deformation gradient for the bracket. For the purpose of this exam-
ple, we will presume that the bracket underwent homogenous deformation. Of course, in
real life, the deformation would likely be inhomogenous and the technique illustrated
below would have to be applied using smaller line segments (such pairs of intersecting
microscopic scratches) to find the deformation at various pointsin the bracket.

Before After

4
O%\\ \a“dev5

(W

Figure 2.8. Airplane landing gear mounting bracket, before and after deformation

Introducing rulers as shown, the straight lines forming the company logo can be
regarded as vectors. The line below the word “ACME” will be taken to be M, , pointing
up and to the left; the line below “landers” will be M, pointing up and to the right. Before
deformation, the rulers show these vectors to have lab components as follows:

M, = —0.875E, + 0.7E, (2.48)
M, = 0.45E, +0.125E, (2.49)

After deformation, the logo vectors deformed into
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m, = —-1.1E, +0.1E, (2.50)
m, = 0.325E, + 0.175E, (2.51)
We will presume that the bracket did not deform at all out of plane so that
M = Egandmg = E, (2.52)

Using method #1 for finding the deformation gradient tensor, the f is constructed by
assembling the lab components of the undeformed vectors into col umns:

~0.875 0.45 0
[f1=1] 07 01250 (2.53)
0 0 1

Similarly assembling the deformed vectors givesthe f tensor as

~1.1 03250
[f1 = |01 01750 (2.54)
0 0 1

Applying Eg. (2.45) gives

-1
~1.1 0.325 0| |-0.875 0.45 0
[E1=1[flf " = | 01 0175 0|| 07 01250
o o 1 o o0 1

—1.1 0.325 0] |-0.2945 1.060 O 0.860 —0.496 0
= 0.1 0.1750|| 1.6495 2.062 0| = (0.259 0.467 O (2.55)
0 0 1 0 0 1 0 0 1

Solving the same problem using method #2, we must first construct the dual vectors asso-
ciated with {M,, M,, M5} . To start, note that

M, x M, = —0.4244E, (2.56)
M, x M, = 0.125E, —0.45E, (2.57)
M,xM, = —0.7E, —0.875E, (2.58)

Therefore, referring to Eq. (2.46),

My=(M,x M,) e M, = —0.4244 (2.59)
u, = —0.29455E, + 1.0604E,
u, = 1.6495E, + 2.06186E,
ug = Es, (2.60)

Recall that the deformed vectors were measured to be
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m, = —-11E, +0.1E, (2.61)

m, = 0.325E, + 0.175E, (2.62)

Referring to Eq. (2.47), we need to compute thedyads, m; ® p,, m, ® p,, and My ® p,:

11 0.324005 —1.16644 0
M ®u, = | 0.1|(-0.29455 1.0604 0] = |-0.029455 0.10604 O (2.63)
0 0 0 o0
0.325 0.5360875 0.6701045 0
M, ® 1, = |0.175|1.6495 2.06186 0| = |0.2886625 0.3608255 O (2.64)
0 0 0o 0
0 000
[m,®u,] = |o/[0o01] = 000 (2.65)
1 001

Now, applying Eq. (2.47) — adding up the above tensors — gives

0.860 —0.496 0
[E] = [0.259 0.467 0 (2.66)
0 0 1

which agrees with the result obtained using method #1. Obvioudly, for this particular prob-
lem, method #1 is superior in its computational simplicity. The fundamental concepts
associated with method #2 are nonetheless important to understand and often easier to
work with in theoretical discussions.

Strain rosette example: astrain rosette orients three strain gages at equal (120°) angles.
To ensure measurement at a single point, the gages are centered at the same location; how-
ever, to analyze the rosette, you can imagine that the gages are actually placed along edges
of an equilateral triangle and then presume that the material in the triangle deforms homo-
geneously by the same amount as the original central point. Strain gages return informa-
tion about length changes but not orientation changes. In principle, if you could accurately
measure the orientation changes of the first two gages, then the third one would not be
necessary. The redundant third strain gage directly measures the relative orientation
change between the first two gages. Thus, strain rosettes really measure only stretch, they
do not characterize rotation. The full deformation gradient (which includes rotation) can
always be constructed by first analyzing the rosette with the “fiducial” assumption that the
first gage does not rotate. Thiswill produce a fiducial deformation gradient and the actual
deformation gradient can be constructed by then superimposing the actual rotation of the
first gage onto the fiducial deformation.
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3. Polar decomposition

A rotation is a specia kind of deformation in which material vectors permissibly
change orientation, but they don’t change length. In this case, it can be shown [see gobag
rotation document] that the associated deformation gradient will be orthogonal (itsinverse
will equal its transpose). Furthermore, since element inversions are prohibited, rotations
will be proper orthogonal (determinant will equal +1) Rotations are discussed in great
detail in the gobag “Rotation” document.

A stretch is a completely different specia kind of deformation in which there exist
three material vector orientationsin the 3D initial configuration that will change in length,
but not in orientation. In this case, the deformation gradient tensor will be both symmetric
and positive definite. The proviso about positive definiteness is important. If a deforma-
tion gradient tensor is symmetric, that does not necessarily mean it is a stretch. For exam-
ple, a pure rotation of 180° will result in a symmetric deformation gradient, but it's not a
stretch because it possesses a negative eigenvalue. Being symmetric, a stretch is diagonal
in its principal basis. The principal values, called principa stretches, equal the ratio of
deformed to undeformed lengths of the three non-rotating material fibers. Material fibers
that are not aligned with the principal directions of a stretch will change orientation, but
for every fiber rotating one way, there will be another rotating in the opposite direction,
making the net rotation of material fibers zero for a pure stretch deformation.

The polar decomposition theorem is a mathematical statement that the (local) defor-
mation of a material element may be regarded as a combination of a pure stretch and a
pure rotation. You can stretch a material and then rotate it or vice versa. Recall that order
of application of sequentially applied deformations matters. Therefore, if you want to end
up with the same deformation, then you must conclude that the stretch used in the “ stretch-
then-rotate” scenario would have to be different from the stretch used in the “rotate-then-
stretch” scenario. You might also suspect that the rotations would aso have to be different
in the two scenarios. While it is true that the stretches are different, it can be proved that
the rotation is the same in both cases. The polar decomposition states that there exists a
rotation tensor R, a“stretch-first” tensor Y and a“stretch last” tensor V such that

Stretchthenrotate:] FE = Re U Note: U iscalled the “right stretch” (3.1)

Rotatethen stretch: | £ = V e R Note: V iscalled the “Ieft stretch” (3.2)

Note that the Jacobianis J = detE = detU = detV . Thefollowing page summarizes
key polar decomposition formulas (proof omitted).
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POLAR DECOMPOSITION

E=ReU E=VYeR

First STRETCH First ROTATE

then ROTATE then STRETCH
||||||||I|||||||||||||||||I|||||||||_ ||||||||I|||||||||||||||||I|||||||||_
= = Samestarting = =
- - configuration - E
= - [F] = {10} - z
= = 01 = =
= Stretch & compress = . - =
~ aong red e - __ Different - ﬁé’ﬁ&t’y 150 -
= (40% strain) - intermediate - =
- = configurations - -
- - ~ Stretch & compress E
- - = along red lines -
= Rotate by 150 - = (40%strain) =
- degrees -~  Same ending - =
- - configuration - E
- - (F] = |~0.795 -0.925 - -
z = N 0.154 -1.074 = =
__I|||||||I|||||||||l|||||||l|||||||||; __I|||||||I|||||||||||||||||I|||||||||__

This figure shows a deformation for which principal Hencky (logarithmic) strains
are +40% and the material rotation is 150°. This deformation can be accomplished via
two stages: stretch and rotation. The polar decomposition theorem says that you will get
the samefinal result regardless of whether you rotate first or rotate last. The key govern-
ing equations are:

U=(ETep)? Y = (EeENY2=ReYeRT

R=Eeyt R=YTleE
For 2D deformations, the rotation tensor can be directly computed by
[R] = 1 Fiui+Fp Fio—Fxn
J(Fiy +Fpp)2+ (Fp—Fp)2|Fpy —Fpp Fp+ Fyy
Theny = RTeE andY = E o RT
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Recall that the deformation of an infinitesimal line element dX isgiven by

dx = F edX (3.3
In terms of the polar rotation and stretch, this becomes

dx = ReU edX (3.4)

Broken down in this manner, we see that U e dX quantifies the stretching of the material
fiber dX, aswell asthe part of the fiber rotation that results strictly from the material dis-
tortion (i.e., its shape change only). Under the pure stretch, U e dXX, fibersthat are aligned
with the principal directionsof U won’t rotate. Fibers not aligned with the principal direc-
tions will rotate, but for any fiber that rotates one way, there will exist a different fiber
rotating in the opposite direction. Consequently, the overall material rotation under a pure
stretch will be zero. The total deformation is obtained after the pure stretch by the applica-
tion of the rotation tensor R, which rotates all fibers about the same axis by the same
angle of rotation. Hence, R isreally is an excellent measure of overall material rotation.

EXAMPLE: Consider the deformation in Eq. (2.66):

0.860 —0.496 0
[E] = |0.259 0.467 0 (3.5)
0 0 1

Thisisatwo-dimensional deformation, so the rotation tensor is found by

[R] = 1 Fii+Fp Fio—Fz
J(Fll +F )2+ (Fp—Fy)?|Foau—Fip Fp+Fpy
— 1 1.327 —0.755
J(1.327)2 + (-0.755)2|0.755 1.327

(3.6)

_ |0.8692 —0.4945
0.4945 0.8692

Since, for 2D deformations, R;; = cosa. and Ry; = sina, where o is the rotation
angle, we notethat o = 30°.

Thereference stretch is

(U1 = [RIT[E]

_ [0.8692 0.4945} {0.860 —0.496} _ {0.876 —0.200}

—0.4945 0.8692||0.259 0.467 —-0.200 0.651
3.7)
The spatial stretchis
[V] = [E]R]" = 0.860 —0.496| | 0.8692 0.4945| _ | 0.993 —0.006 (3.8)
- T 0.259 0.467 ||—0.4945 0.8692 —0.006 0.534
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Note that the off-diagonals (V,, and V., ) are nearly equal to zero, which means the prin-
cipal directions of the spatial stretch just happened to turn out to coincide with the lab
basis for this particular example. Also note that the 11 component of the stretch is nearly
equal to 1. For this particular problem, if it weren't for computational round-off, V,, and
V,, haveturned out to be identically zero and V,; would have been identically equal to 1.
We are able to make this assertion because we know how we created Fig. 2.8 (which cor-
responds to this deformation) in the first place. That figure was created by using the com-
puter’s drawing tools to first rotate the undeformed configuration by an angle o = 30°

and then to reduce the height of the rotated drawing by approximately 50% (note that V.,

isnearly equal to 50% of unity). Since the drawing was obtained by first rotating and then
stretching, we know that the rotation angle computed from the polar decomposition had to
come out equal to our initial rotation angle, and the spatial stretch had to come out to be a
50% vertical compression, as it has! We could have alternatively constructed the drawing
by using a stretch then rotate sequence involving a 50% compression of the initial config-
uration along aline oriented at —30° followed by arotation of +30°. In general, the prin-
cipal directions of stretch are neither coincident with the lab directions nor related in any
way to the rotation angle.

Incidentally, upgrading the above stretches and rotations to 3D gives

10,8692 —0.4945 0

[R] = |0.4945 0.8692 0 3.9
0 0 1
| 0.876 —0.200 0

(U] = |-0.200 0.651 0 (3.10)
L 0o 0 1
1 0.993 —0.006 0

[V] = |—0.006 0534 0 (3.11)
. 0 0 1

4. Strain

Linear strain measures

The deformation gradient is truly the best measure of deformation. It is especially
attractive because it contains information about both stretch and material rotation. For
one-dimensional homogenous uniaxial deformations, the axial strain is often defined as

L-L
L

(o]

e =

° = %-1, where A= L (4.1)
I_0
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The parameter X iscalled the “axial stretch.”
Axial strain is often defined alternatively as
L-L
g = 2 = [A1-1] (4.2)
L
Many advanced materials models define the strain as
e = InA (4.3)

Note that all you really need to describe the amount of deformation isthe stretch A . All of
these strains definitions are of the general “Seth-Hill” form,”

6 = %[kk—l] (4.4)

The parameter k characterizes the strain definition. By appropriate choices for k, any of
the above strain definitions can be achieved. For example, EQ. (4.1) is obtained by choos-
ing k=1, while Eq. (4.2) corresponds to k=—1. The log strain in EqQ. (4.3), also known as
Hencky strain, is obtained in the limit as k — 0. All of these various strain definitions are
equivalent to first order when length changes are small (i.e., when A iscloseto 1). That's
because a two-term Taylor series expansion of Eq. (4.4) centered at A=1 givese~A—1,
regardless of the value of k.

The variation of strain with stretch
isshown in Fig. 4.1 for various choices
of the Seth-Hill parameter k. All of the
strain measures are negative in com-
pression (A< 1) and positive in ten-
sion (A > 1). For positive choices of k,
extreme compression toward the limit
as A — 0 results in the strain measure
approaching a finite limit. Physically,
one would expect that an infinite load K0
would be required in order to COMPIESs o041 The Seth-Hill family of strain mea-

a material down to nothing. Conse-  sures.

guently, if a choice k>0 were to be

used in alinear stress-strain relationship, = Eg, this behavior would imply that com-
plete compression (a physical impossibility) could be obtained via a finite load. Such a
result is nonphysical and therefore a nonlinear constitutive model must be used when
using k> 0 in a highly compressed material. Otherwise numerical solutions will exhibit
compression instabilities. When choosing a negative Seth-Hill parameter (k< 0), the
opposite happens:. positive choices for k become unstable if a linear stress-strain relation
is used in a highly tensile (large stretch) application.t The logarithmic strain (k — 0) is
the only strain choice that avoids both of these (compression and tension) pitfalls. This

* Referred to as “Erikson-Doyl€” in the rheology literature.
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does not mean that a material’s stress-strain relationship will necessarily be linear with
respect to a logarithmic strain measure; it only means that a first-order Taylor series
expansion of the actual (generally nonlinear) stress-strain function is likely to be more
accurate than other strain measures. Other strain measures can be used, and the same level
of accuracy can be obtained if more termsin a Taylor series expansion are employed.

Recall that a stretch isthe ratio of deformed to undeformed lengths. For general defor-
mations, recal that we have adready shown that the Jacobian
(J = detE = dety = detV) equalstheratio of deformed to undeformed volumes. Thus,
J isthe volumetric analog of the linear stretch A and we may define volume strainsin a
manner consistent with the linear strain definition given in Eq. (4.4). Namely, the “consis-
tent” volumetric strain is defined

1
g, = R[Jk—l] (4.5)

This volumetric strain is well posed for any 3D deformation. Soon, we will define strain
tensors and then prove that the consistent volumetric strain is not equal to the trace of the
strain tensor except when k=0 (i.e,, log strain).

Strain tensors

For 3D deformations, linear strain measures can still be defined in terms of the ratio of
the deformed to undeformed lengths of an individual material fiber. However, for 3D, dif-
ferently oriented fibers will experience different amounts of stretch. Furthermore, two
material fibers can change their relative orientations under 3D deformations, so we need to
quantify that phenomenon as well. We have already emphasized that the deformation gra-
dient tensor already does an excellent job in this respect. The deformation gradient is, by
far, the superior measure of material deformation. Nonetheless, a lot of people are more
comfortable with using strain instead of the deformation gradient, so we will describe now
how to compute strain from a deformation gradient tensor. Keep in mind that strain tensors
lose information (about rotation); you can construct any of the strain tensors if you have
the deformation gradient, but you cannot do the reverse.

Recall that the 1D definition of strain given in the previous section was phrased in
terms of the ratio of deformed to undeformed lengths. We can extend this concept to 3D
by making use of the polar decomposition theorem. The stretch tensor from the polar
decomposition is symmetric and positive definite. Consequently, it is diagonal in its prin-
cipa basis. In the absence of material rotation (i.e., if R = |) any material fiber oriented
in one the it principal stretch directions will not change orientation, but it will change
length by afactor equal to the eigenvalue, A;. This suggests that we can use the Seth-Hill
generalized strain definition in each of these directions, and then assemble the resulting
linear strains into a tensor that is diagonal with respect to the stretch directions. When

T Thisislesslikely to be troublesome in practice because usually some other inelastic failure mecha-
nism (e.g. fracture) usualy initiates well before the unstable tensile regime is reached.
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there is materia rotation (i.e., if R= | ) then two strain definitions are possible, one that
uses the reference stretch and one that uses the spatial stretch. That is, to define a 3D gen-
eralized strain tensor, we can “upgrade” the Seth-Hill strain measure in Eq. (4.4) to either
areference strain,

g = ﬁ[gk—u (4.6)
or aspatial strain,
e = vk-1) @)
Of course, if k=0 isused, the expressions become, in the limit,
e = In(Y) and e = In(Y) (4.8)

In general, for non-even powers of k,* the only way to compute gk [or to compute
In(Y)] requires expressing Y in its principal basis, raising each principa stretch to the
kth power [or taking logs of the principal stretchesif log strain is desired], and then trans-
forming back to the lab basis. Specifically if [U] is the matrix of lab components of U
and if amatrix [Q] is constructed to contain the lab components of the orthonormalized
principal stretch basis, then

[U] = [QIT[A][Q] (4.9)
where [A] isadiagona matrix containing the principal stretches associated with the prin-
cipal basis. The components of the general Seth-Hill strain are found by

[e] = %([Q][Ak][Q]T—[l]) (4.10)

Similarly, the components of the logarithmic strain with respect to the lab basis are found
by
[e] = [QI[INA][Q]T (4.11)

where [InA] is a diagonal matrix containing the natural logs of the principal stretches.
For the logarithmic strain, note that

tre = In(hy) +In(hy) + In(hg) = IN(AyAxks) = INJ = &, (4.12)
The logarithmic strain is the only large-deformation strain measure whose trace equals the

consistent volumetric strain. Some sketches of pure stretch deformations and their associ-
ated logarithmic principal strains are given on the following page.

* We will explain later why an eigenval ue decomposition is not necessary for even Seth-Hill parame-
ters. That's the key reason why even powers are used at all -- they are smpler computationally.
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PURE STRETCH

A A

Wed C(W Hencky &train: +0%
o
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PURE STRETCH FOLLOWED BY ROTATIONS
\ Rotation: 30 deg
Undeformed
configuration
Hencky strains:+40%
Rotation: zero Rotation: 60 deg

Rotation: 90 deg

Rotation: 120 deg

Rotation: 180 deg

Rotation:
210 deg
Rotation: 150 deg
(£] = [07% —0.925} (R] = |-0:866 -0.5}

| 0154 —1.074 ~ | 05 -0.866
[y] = |0766 0264 [y -
10.264 1.396 L
[;] = |~0-306 0.257 =
=~ | 0257 0308 ‘=
Rotation:
240 deg

Hencky strains.+40%

Rotation: 270 deg

Rotation: 300 deg
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For pure stretch deformations, there is no difference between ¢ and ¢ defined in Egs.
(4.6) and (4.7). However, whenever there is material rotation, the spatial and reference
strains will differ from each other by

T (4.13)

uom
I
g
°
ami
°
g

where R is the rotation from the polar decomposition theorem. This distinction (illus-
trated on the previous page) becomes of paramount importance when constructing mate-
rial congtitutive laws for anisotropic materials. Modeling an anisotropic material requires
specification of the material orientation. If a constitutive model is constructed using the
spatial strain, then that model must transform the initial material orientation into the new
(rotated) orientation prior to applying the model. Additionally, the principle of material
frame indifference demands that models that use spatial strain must introduce special
“objective” rates when ever the constitutive model is applied in rate form. When using the
reference strain, however, neither rotation of the material orientation nor specia rates are
required. The price paid for using reference strain measures is the spatial strain (which is
what’s usually available from structural mechanics host codes) has to be transformed back
into the unrotated configuration prior to application of the constitutive model, and then the
output of the model must be transformed back to the spatial configuration. Computation-
ally, the reference strain option is more efficient and guaranteed to satisfy the principle of
material frame indifference.

We already mentioned that an advantage of the logarithmic strain is that its trace
equals the volumetric strain. Furthermore, the log strain tends to be the choice that makes
the stress-strain function “most linear” in uniaxial tests. However, the logarithmic strain
requires a polar decomposition in order to obtain a stretch tensor, and the polar decompo-
sition is labor-intensive because it requires an eigenvalue analysis to take the square root
of atensor. Moreover, computing rates of the logarithmic strain is extraordinarily compli-
cated because, in addition to the principal stretches being a function of time, the principal
directions also change in time. For many people, these disadvantages far outweigh the
advantages.

Recall (from the polar decomposition summary sheet) that U = (ET e F)/2. Conse-
guently, the generalized Seth-Hill reference strain in Eq. (4.6) may be written

§ = %[(ET. E)k/2_|z] (4.14)

All of the disadvantages we cited for the logarithmic strain will apply whenever the Seth-
Hill parameter not an even (and nonzero) integer. Even values for the parameter k are
computationally attractive because there is no need to compute the square root of a tensor.
In particular, the choice k=2 corresponds to the what is called the “Lagrangean strain”
tensor. With this choice, the “square root” in Eq. (4.14) goes away, giving

Te

ol

[

Tl
Tl

—1] (4.15)

NI
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The Lagrange strain is areference strain. Consequently, it may be regarded as a strain that
results from the pure reference (right) stretch prior to the rotation part of the deformation.
Superimposing even more rotation will have no effect on the Lagrange strain. Anisotropic
constitutive models that use the Lagrange strain in conjunction with a reference stress
measure do not require rotation of the material orientation into the current state. These
models will automatically satisfy the principle of material frame indifference without
needing to introduce any special objective rates.

The Lagrange strain can be readily computed directly from the deformation gradient ten-
sor (no polar decomposition is required), and itsrate is also easily found by

T

[ ] T.

Tl-
uTl-

+

[

Tl
Tl

] (4.16)

ol
1
NI

A fundamental identity from continuum mechanics states that the rate of the deformation
gradient is related to the material’s spatial velocity gradient, L = ov/0x, by

E=LeF (4.17)
Therefore, Eq. (4.16) can be written

Te

il

Tl
W)

oF | whereD=Z[L +LT] (4.18)

NI
a—

The tensor D is often called the “rate of deformation,” which is an unfortunate and mis-
leading name because, despite having some rate-like properties, it is not the proper rate of
any tensor. By this, we mean that it is possible to construct closed deformation paths® for
which the time integral of D isnot zero. Frequently in mechanics, it is useful to introduce
agenera “unrotation” operation, denoted by an overbar, and defined for any spatial sec-
ond-order tensor Y by

Y=RTeYeR (4.19)

~ ~

Using the overbar notation, Fig. 4.18 can be written

E=VeDey | (4.20)
where

D=RTeDeR (4.21)
and

V=ETeR=RTeVeR =y (4.22)

* |.e., deformations that begin at one configuration, move through other configurations, and then
return to the starting configuration.
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Reference displacement gradients

The displacement gradient tensor is just the derivative of the displacement with
respect to the reference position vector:

, _ oy,
x | or, in RCS, Hij = 3% (4.23)

— 2—2) - U2 U2 - F_| (4.24)

E =ZS[H+HT+HTeH] |Thisiseq. (3.19) inthe book. (4.25)

This is the formula one typically finds in an elasticity textbook, whereas continuum
mechanics textbooks typically favor the more elegant and computationally simple
Eq. (4.15).

A “wrong-headed” rotation measure
Many elasticity books define atensor Q by

Q

~

%[H_HT_UT.U] (4.26)

~ ~

or
Q = |;| _I; (4.27)

This tensor is well-defined, but it is not a sensible or useful measure of material rotation,
as claimed (by some) in the elasticity community. We will call this tensor the “wrong-
headed rotation” (WHR) tensor. In terms of the deformation gradient, the WHR tensor
may be written

Q= E-L-3[ETeE-1] (420

]

In terms of the polar stretch and rotation tensors,

Q =Re —|——[U2—|] (4.29)
In the complete absence of material stretch (i.e., when U ~|) the tensor Q +| does
indeed approximately equal the polar rotation R. However, for finite stretches, such an
interpretation does not apply and the WHR tensor is essentialy useless. For finite stretch
problems, forget about the WHR, and use the polar rotation tensor instead.
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Under a pure stretch (i.e., non-rotational) deformation, (i.e., when E = U), the WHR ten-
sor becomes Q = e—E, where ¢ isthe engineering (k = 1) strain measure. Thus, since
engineering strain is not equal to Lagrange strain, the WHR tensor will not be zero or the
identity even under pure stretches. It is a lousy measure of material rotation.

Incidentally, noting that the last term in Eq. (4.28) is the Lagrange strain, the WHR
tensor may be written

Q=F-|-E (4.30)

Spatial strain measures

In the previous sections, we discussed the Lagrange strain tensor E , defined by
=_ 1.5
E = 31Y%-1] (4.31)

This strain measure is a reference strain measure because it is computed using the refer-
ence stretch tensor. It will not change if you superimpose extra rotation on the deforma-
tion. The Lagrange strain has a spatial counterpart, called the Signorini strain, defined

1[\!2‘5 (4.32)

E=35

The Signorini strain is related to the Lagrange strain by
T (4.33)

ol
)

Both the Lagrange and Signorini strains are of Seth-Hill type with a Seth-Hill parameter
k = 2. Recall that the general form for a Seth-Hill spatial strain uses the spatial (left)
stretch:

.
= 2lY*-1] (4.34)

am

Recallingthat V = (E  ET)Y/2, the Seth-Hill spatial strain can be written
-1 Tyk/2
¢ = ([EeEDT-1] (4.35)

Therefore, once again, choosing a Seth-Hill parameter that is an even integer has the
advantage that no polar decomposition is required.

The Eulerian strain g isaspatial strain measure corresponding to a Seth-Hill param-
eter k = -2:

NI

[L-(E+EN™] = 3[L-(ETe )] (430

am
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SPATIAL displacement gradients

The spatial displacement gradient tensor is just the derivative of the displacement with
respect to the spatial (deformed) position vector:

ou.
, or, in RCS, hij - & (4.37)

6xj

=

1
Q.lQ.
Y i

Recalling that u = x — X. Differentiating this with respect to the spatial position vector
gives

dx
x d

d
Solving for E—l in EQ. (4.38) and substituting the result into Eq. (4.36) gives

X<

|
I

= |-E* (4.38)

o | Q.
I (e
Q.
I~
X<
I
<
—
o
X

2

e =35[h+hT—hTeh] [Thisiseq. (3.28)inthebook. (4.39)

Small displacement gradients

Recall from Eq. (4.1) that all Seth-Hill linear strain measures become equivalent if thelin-
ear stretch A = L/L, iscloseto 1. Similarly, if the stretch tensor is close to the identity
(i.e, if al of itseigenvalues are close to 1), then all reference strain measures are approxi-
mately equivalent, so we may define a small-stretch* reference strain tensor as

S=y-| (4.40)

am

Likewise, we can define

eSS = Y| (4.41)

~ ~
= =~

Here “SS’ means small stretch (i.e., each principal stretch is approximately equal to 1).
For small stretch deformations, any identity that was true only for a particular Seth-Hill
parameter becomes true (approximately) for the small stretch tensor as well. For example,
the volumetric strain is in general equal to the trace of the strain tensor only for logarith-
mic strain definitions. However, for small stretches, this statement holds approximately
regardless of the strain definition.

Even if stretches are small, however, there might still be large rotations, so

Ml

SS 4 ¢SS (4.42)

* The phrase “small stretch” does not mean the principal stretches are close to zero; it meansthey are
closeto 1.
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In order to assert that all strain definitions are approximately equivalent, we must add the
proviso that the rotation is small as well. This means that the deformation gradient tensor
is approximately equal to the identity and therefore the displacement gradient tensor is
approximately zero.

If the displacement gradients are small, then the last term in Eq. (4.25) is negligible,
and Eq. (4.25) becomes

gS0C = %(lj +HT) (4.43)

Here, “SDG” standsfor “small displacement gradients.” For small displacement gradients,
not only is the stretch small, but the rotation is small too. Therefore

g6 = U], (4.44)
or
1 .
U =5(H+ED L (4.45)

For small displacement gradients, the infinitesimal rotation tensor is approximately

T (4.46)

(

V)
8
®
1

wuL
|

T

NI

This approximation must be handled carefully since this expression does not correspond
to an orthogonal tensor.

Volume strain

In the section on the polar decomposition, we noted that the Jacobian J equals the deter-
minant of stretch, which is simply the product of the principal stretches:

J = Ahohg (4.47)

Furthermore, in the section on the deformation gradient, we showed that the ratio of
deformed to initial volumes equals the Jacobian

V
J=— 4.48
V, (+.48)

Thus, the Jacobian is the volumetric analog of the linear stretch, . = L/L,. When a
strain is defined using a particular choice k for the Seth-Hill strain parameter, then

_ ﬁ(gk—':) (4.49)

amMmi
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The consistent definition of volumetric strain uses the same value for the Seth-Hill param-
eter so that

g, = i(Jk—l) (4.50)

In this section, we will show how the consistent volumetric strain isrelated to invariants of
the strain tensor — we will provethat it is not equal to the trace of the strain tensor except
under conditions of small strain.

From Eq. (4.49), we know
lka =L+ kg (4.51)
Therefore, taking the determinant,
JK = det(] + kz;;) (4.52)

Using a fundamental theorem from 3D matrix analysis, the determinant on the right hand
side can be expanded to give

JK = det(L) +LC:(ke) + L: (ke)C + det(ke) (4.53)

where the superscript “C” denotes the cofactor. The cofactor of the identity is just the
identity itself, so the second term on the right hand side simplifiesto ki, , where |, = tre.
Also, (k)€ = k2(&)C, so the third term becomes k2., where I, is the second invariant
of strain,zgiven byi2 = tr(g)©. Finaly, the last term is just the third invariant 15 times
k3. Thus, the above equation may be written

K= 14Kl +K2,+ K3, (4.54)

and the consistent volumetric strain becomes

g, = Iy +kl, + Kl (4.55)

For arbitrary deformations, note that the volume strain will be identically equal to the trace
of the strain only if k=0. In other words, the logarithmic (Hencky) strain measure is the
only one whose consistent volume strain measure is given by the trace of the strain tensor.
Of course, for small deformations, the strain measures become indistinguishable, so
approximating the volumetric strain by the trace of the strain is acceptable in that case.
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5. EXAMPLES: non-rotational deformations

Uniaxial Strain

For uniaxial strain, all particle motion occurs in one direction. Because thereis no lateral
material motion, the shape of the cross-sectional areaisirrelevant — it might be acircular,
square, or any other shape. For this reason, we may simplify the analysis without any loss
in generality by presuming that the cross-section is rectangular and is therefore most eas-
ily described using arectangular Cartesian system (RCS) for the coordinates.

Let’s suppose that we set up the RCS basis so that the 1-direction is aligned with the
direction of motion. Theinitial location of amaterial particle can be expressed in terms of
our RCS as

X = X8 + X8, + X385 (5.1)
After deformation, this particle deforms to a new location
X = X €1 X6, + X363 (5.2)

where, for uniaxial strain,

X, = (X)) (5.3)
X, = X, (5.4)
X3 = X5 (5.5)

The last two of these equations state that no motion occurs transverse to the 1-direction.
All motion is characterized by the 1D deformation mapping function f. Here, the function
f depends on the nature of the loading. The deformation gradient is given by

_6x1 0Xyq axl_

0Xy 0%y 0Xg

200
(£1= |22 22 2% _ |7 o, where A =f '(x,) (5.6)
OXy OX, 0Xg
001
O0X3 OX3 OXg

0Xy 0%y 0Xg

Note that the local “stretch” A varies only along the axial direction. When the stretch is
constant, the deformation is said to be homogeneous uniaxial strain. Suppose, for exam-
ple, that a piston contains agas. If the piston is slowly compressed from alength L to L,
then the deformation will satisfy x,/X; = L/L,, or

X; = (L/Ly)X;, and therefore L = L/L, (5.7)
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If, on the other hand, the piston is suddenly compressed from alength L to L, then the
material displacements at agiven instant in time will be highly inhomogenous due to wave
motion back and forth. Even if adeformation is equilibrated, it might not be homogenous.
Consider, for example, along cylinder of a compressible gel sitting on a table so that the
axis of the cylinder points up. Then gravity will make material more compressed at the
bottom of the cylinder than at the top.

Q 5 Q 3
Inhomogenous uniaxial strain Homogenous uniaxial strain
Q Q

The left hand side of the above figure shows inhomogenous uniaxia strain. Note that the
material elements (i.e., the little squares of material) don’t deform very much on the right
side of the bar, but they are stretched by more than 400% on the left hand side. You might
expect a deformation somewhat like this if you hang a long cylinder of cork* from the
ceiling. For homogenous uniaxial strain, each little material element stretches by the same
amount everywhere.

Uniform spherical contraction/expansion
Consider a deformation for which

X = }L)~( (5.8)
In other words, each initial material vector changes length by the same proportion. Then

E =2l (5.9)

* Cork isamaterial whose Poisson’sratio is approximately zero. Consequently, it would have no off-
axis (transverse) contractions. This constraint is needed to ensure uniaxia strain conditions.
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Non-uniform spherical deformation

Consider a deformation in which spherical coordinates {R, ®, @} are used to locate
theinitial position of a point and spherical coordinates r, 6, ¢ identify the deformed loca-
tion of that point. A spherical deformation is one for which

r = f(R), 6 =0, and o= (5.10)

Triaxial strain

Triaxial strainisahomogenous axially symmetric deformation. It differs from uniaxial
strain only in that lateral deformations are permitted. Specifically, the deformation gradi-
ent is of theform

E = AR\t AR, (5.11)

Here, the subscripts “A” and “T” stand for “axial” and “transverse” respectively, and the
coefficient tensors are projection operations defined

P

P, =10 (5.12)

and

r=l

)

—nn (5.13)

The vector n is a unit vector in the direction of the symmetry axis, and nn denotes the
dyadic multiplication of n with itself (the result is a second-order tensor with ij compo-
nents given by n, n. When P , &ctsonan arbitrary vector v, the result is the part of that
vector in the direction of the symmetry axis. When P, actson the vector, the result isthe
part transverse (perpendicular) to the symmetry axis. Stated mathematically, for any vec-
tor, v

°
A

<
I

(ven)n (5.14)

tav)

)

°
A

<

<

=(

We have stated that triaxial strain is a being here described as a homogenous deformation,
which means that the deformation gradient tensor E is spatially constant and the defini-
tion of the deformation gradient, dx = E e dX may therefore be integrated to give

<

en)n (5.15)

X =EeX+GC, (5.16)

where C is an integration constant representing rigid translation. In light of Egs. (5.11),
(5.14) and (5.15), the deformation mapping function can be written

X = Aa(X om0 +Ag[X~(Xem)D]+C (5.17)

In terms of RCS coordinates with the 1-direction aligned with n, the deformation gradient
and the mapping function may be written
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Ay O O
[El=]02; 0 (5.18)
0 0 Ar
and
X; = ApX;+Cy (5.19)
X, = AX, +C, (5.20)
X3 = ApXg+ Cy (5.21)

Here, X; denotesthe distance of X from the symmetry axis.

Note that uniform spherical deformation (discussed on page 39) is aspecial case of tri-
axial deformationinwhich 2, = A, = A and C = Q. Also, homogenous uniaxial strain
isaspecial case of triaxial deformationinwhich 2, = A and Ay = 1.

6. Axisymmetric deformations

Constricted rod

Consider a deformation in which arod expands or contracts to a an axisymmetric rod of
varying profile. Let a denote aunit vector that defines the axis of symmetry. Any vector v
can always be decomposed into parts parallel and perpendicular to the axis as follows

where y®id = g(gey) and yaed = y_yad (6.1)
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This projection decomposition can be applied to
both the initial and deformed position vectors.
Under an axisymmetric deformation, the axial
part of the deformed vector is proportional to the
axial part of the undeformed vector and the lat-
era part of the deformed vector is proportional
to the lateral part of the initial vector. The two
proportionality constants are not required to be
equal to each other. Furthermore, the proportion- Deformed configuration
ality constants are permitted to be functions of

the axia position. Thus, for the axial part, we

e e
2@ = (X)X (62) % gE2E

where

Initial configuration

IREEE
I

INRRN

o

11
I
U

H

Xy=Xea (6.3) Figure6.1. Axisymmetric deformation.
) : . In thisfigure,

Both x®id and X&id are proportiona to a. 4 3%
Consequently, 9Xy) = g%, and hX,) = 1_5(2_5)

xg=aex = f(X)X, (6.4)
Thus, rather than using the function f, we can say

Xg = 9(Xy) (6.5)
For the lateral part, we have

)~(Iateral = h(xa))N(Iateral (6.6)
Putting it al together, the mapping function is

X = ag(Xy) + (X —aXyh(Xy), (6.7)
In terms of a coordinate system for which E; = a, this becomes

X1 = 9(Xyp) (6.8)

Xy = h(XX, (6.9)

X3 = h(X)X;5 (6.10)

Differentiating the mapping function, Eq. (6.7), with respect to X gives the deformation
gradient tensor

F = aag'(X,) + (X—aXyah'(X,) + (L -aa)h(X,) (6.11)

which, in terms of an aligned basis becomes
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9'(Xy) 0 0
[E] = [X,[h'(X)]  h(X)) 0 , where f = f(X,) (6.12)
Xs[h'(X)] 0 h(X,)
Note that along the centerline the deformation gradient is given by
E = 23g9'(Xy) + (L-aa)h(Xy) (6.13)
or
F = A(aa) +A(L—aa), where A = g'(X,) and L = h(X,) (6.14)

In terms of an aligned basis, the deformation gradient along the centerline is given by

AODO
[El1=]oaro0 (6.15)
00X

The Jacobian is given by
J = AA2 (6.16)

7. EXAMPLES: large rotation problems

Bar bendin 0 Note: thisis the same as the example on page 96 of the textbook.
A bar, initially of height H, bends into
curved wedge segment as shown until the top (X3 %)
surface of the bar is oriented at angle 6, - Py i
The geometry of this deformation can be alter-
natively described by specifying the radius R
of the centerline and the stretch A€ of the cen-
ter line (i.e., its deformed length divided by its
initial length). One can easily switch back and
forth between these two specification methods ~

e
“‘ %
S

. . S
h o'es
by using therel atlo: “:‘:‘ ““‘““‘
RO = ACH, (7.1) 0 ¢==-=-===““
which follows from the definition of stretch. ==lll‘

For this deformation, we seek:
1. The mapping function.
2. The deformation gradient.

3. The polar rotation tensor R and reference (right) stretch U .
4. The Lagrange strain
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Let X = X,E;+X,E, denote the initial position of a point in the body, and let
X = X, E; + X;E, denote the deformed location of that same point.

First let's find the mapping function. In other words, we seek formulas for the
deformed coordinates (X, X,) of a point expressed in terms of the initial coordinates
(X3, X,) of that same point. Any initialy vertical line can be identified by its initial
abscissavalue, X, . Eachinitially vertical line bends into the shape of an arc of radius X, ,
with an arc length given by 06X, , where 6 isthe arc angle. The arc angle increasesin pro-
portion to X, . Therefore, a constant o exists such that

0 = aX, (7.2)
The arc length of apoint originally located at (X;, X,) must be given by
S = aX; X, (7.3)

Applying this equation to the center line gives

RO« = aRH (7.4)
Therefore
0
o = _max — }LC (7.5)
H R
and Eq. (7.2) and Eq. (7.3) becomes
X,
0 = ﬁemax (7.6)

For example, if you are located 2/3 of the way up the bar in the undeformed configuration,
then you will be 2/3 of the way aong the arc in the deformed configuration.

Consider a point (X;, X,), not necessarily on the center line. After deformation, this
point deforms to a new point (x;, X,) located adistance r = X; from the origin. Conse-
quently,

X2
X, = rcos@ = chos(ﬁemax) (7.7)
: (X,
X, = rsing = Xlsn(ﬁemax) (7.8)
The deformation gradient is given by
_0Xy (Xz ) _0Xy CX1 . (Xz )
Fll—gfl—cos Hemax Flz—é—xz——x Rsm Hemax
_ 5X2 o (XZ ) _ 6)(2 _ Cxl (XZ )
Foy = 8_)(1 = 8n Hemax Fo = 6_)(2 = R COS Hemax (7.9)

Assembled into matrix form,
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(F1= (¢T3, (7.10)
s I'c
To save “ink” in upcoming calculations, we have defined
KO, K1
I'= 5 = R (7.11)
_ X5 _ A
C= Cos ﬁemax = COS Xzﬁ (7.12)
X
SEsin(ﬁzemax) = sin(xz%c) (7.13)

The Jacobian equals to the ratio of the deformed to undeformed volumes and can be com-
puted by

J=detE =T (7.14)
The polar decomposition gives

[R] = {C‘} and [U] = {1 0} (7.15)
S C or

Note that this deformation consists of astretch I in the 2-direction, followed by arotation
into the final deformed orientation.

The Lagrange strainis

1 . 1 , 0 0

E] = Z{[F]T[F]1-[I1} = Z{[U]2-[I]} = 7.16

[E] = S{FITIFI-[11} = S{[U12-[1]} 0321 (7.16)
The reference logarithmic strain is

[e] = Infu] = |9 O (7.17)

0 InT

The logarithmic volume strain is given by

g, = tré = Inl (7.18)
The displacement gradient is given by

[H] = [F1-[1] = {(C‘“ s } (7.19)

s (I'c-1)

For this problem, the wrong-headed rotation measure becomes
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F) (7.20)

Unlike the polar rotation, there is not really any physical interpretation for this tensor. For
pure stretch deformations, it equals the difference between the engineering strain (Seth-
Hill parameter k=1) and the Lagrange strain (Seth-Hill parameter k=2). Under suffi-
ciently large stretches, this difference will be neither zero nor the identity even in the
absence of rotation.

Homogenous shear
<need to add this section>

Torsion
<need to add this section>

Vortex
<need to add this section>
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