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ABSTRACT 
 
To establish mechanical properties and failure criteria of silicon carbide (SiC-N) ceramics, a 
series of quasi-static compression tests has been completed using a high-pressure vessel and a 
unique sample alignment jig.  This report summarizes the test methods, set-up, relevant 
observations, and results from the constitutive experimental efforts.  Results from the uniaxial 
and triaxial compression tests established the failure threshold for the SiC-N ceramics in terms of 
stress invariants (I1 and J2) over the range 1246<I1<2405. In this range, results are fitted to the 

following limit function (Fossum and Brannon, 2004),
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a1=10181 MPa, a2=4.2×10-4, a3=11372 MPa, and a4=1.046. Combining these quasistatic triaxial 
compression strength measurements with existing data at higher pressures naturally results in 
different values for the least-squares fit to this function, appropriate over a broader pressure 
range. These triaxial compression tests are significant because they constitute the first successful 
measurements of SiC-N compressive strength under quasistatic conditions. Having an 
unconfined compressive strength of ~3800 MPa, SiC-N has been heretofore tested only under 
dynamic conditions to achieve a sufficiently large load to induce failure. Obtaining reliable 
quasi-static strength measurements has required design of a special alignment jig and load-
spreader assembly, as well as redundant gages to ensure alignment. When considered in 
combination with existing dynamic strength measurements, these data significantly advance the 
characterization of pressure-dependence of strength, which is important for penetration 
simulations where failed regions are often at lower pressures than intact regions. 
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1.  Introduction  
 
Sandia is currently working to enhance the ALEGRA (Arbitrary Lagrangian Eulerian General 
Research Application) code (Budge and Peery, 1993; Summers et al., 1997, Wong et al., 2001) 
to simulate the mechanical and thermomechanical responses of Silicon Carbide (SiC) for 
applications in the area of hypervelocity penetration of metal clad armor.  Concurrent with 
constitutive model development, laboratory experiments have been conducted under quasi-static 
conditions to provide the experimental data needed to parameterize the models to be used in 
ALEGRA as well as to give insight into the failure phenomena under different loading 
conditions.   
 
This report describes the experimental characterization of the mechanical properties of SiC-N 
ceramics manufactured by CERCOM, Inc.  SiC-N is an improved grade of SiC-B with higher 
flexural strength and fracture toughness (Appendix D).  Both grades are so-called “PAD” 
(Pressure Assisted Densified) Silicon Carbide (Cercom, 2003) produced by hot pressing powders 
with an organic binder (Dandekar and Bartkowski, 2001).  A proprietary milling process is used 
to achieve a high homogeneity in grain size distributions.  Figures 1 and 2 show SEM (Scanning 
Electron Microscope) pictures of a SiC-N specimen prepared for testing.  The grain size varies 
from 1 to 8 µm with an average value of 4 µm (Bartkowski and Spletzer, 2001).  The pore spaces 
(dark areas) have an average dimension of approximately 2 µm. 
 

Figure 1.  SEM micrograph of the surface of a SiC-N specimen prepared for mechanical testing.  
Grain and pore sizes are distributed uniformly. Also shown are the shaded grooves created from 
surface grinding of the specimen (Micrograph by S. J. Glass). 
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Figure 2.  SEM micrograph of the polished and etched surface of a SiC-N specimen revealing grain 
boundaries and pore spaces (Micrograph by S. J. Glass).  

The objective of this experimental study was to obtain the mechanical calibration properties of 
the SiC-N ceramics under quasi-static compressive loading conditions so that the constitutive 
model and host code could be validated under different loading conditions.  The experimental 
program consists of uniaxial compression and triaxial compression tests of the SiC-N ceramics.  
The uniaxial compression tests have been conducted up to a failure stress to provide the 
unconfined uniaxial compressive strength and elastic constants, Young’s modulus E and 
Poisson’s ratio ν. The triaxial compression tests determine the low pressure part of the shear 
failure envelope represented in terms of stress invariants. 
 



11

2.  Sample Preparation  
 
The SiC-N specimens were obtained from the manufacturer (CERCOM Inc.) in the form of right 
circular cylinders.  The specified dimensions required for mechanical testing were 12.70 
(±0.025) mm in diameter and 25.40 (±0.025) mm in length.  The dimensions fall within the range 
of suggested length-to-diameter ratio (2 to 2.5) recommended for uniaxial or triaxial 
compression tests (eg. ASTM D4543 “Standard Practice for Preparing Rock Core Specimens and 
Determining Dimensional and Shape Tolerances”).  The ends of the specimen were ground flat 
to be parallel each other within 0.0025 mm tolerance.   
 
Before testing, randomly selected specimens were visually inspected under SEM for any 
significant surface flaws of the specimen.  Figure 3 shows SEM micrographs of a typical SiC-N 
specimen.  The condition of the edge of the cylindrical specimen is shown in two different 
magnifications (×40 and ×1000).  Two pairs of strain gage rosettes, consisting of axial, lateral, 
and oblique strain gages, were mounted on opposite sides of the specimen (180° apart) at mid-
height of the specimen.  For each rosette, the axial strain gage (oriented in parallel with the long 
axis of the specimen) and the lateral strain gage (perpendicular to the axial gage) were used to 
measure axial (εa) and lateral (εl) strains, respectively.  
 

Figure 3.  A SiC-N specimen prepared in the form of a right circular cylinder.  Two SEM 
micrographs (×40-left and ×1000-right) show the magnified edge of the cylinder using SEM.  The 
strain rosettes measure axial and lateral strains (Micrographs by S. J. Glass). 
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3.  Experimental Set-up 
 
Because of the extremely high mean strength (~5GPa) and the high Young’s modulus (~460 
GPa) of the SiC-N ceramics (see Appendix D), precise alignment of the specimen with respect to 
the loading axis is critical in achieving uniform loading conditions to the specimen. Any minor 
deviations in parallelism in the pistons of a test vessel, end-caps (or load-spreaders), and end 
surfaces of the specimen contribute to premature failures of the specimen or the loading 
apparatus.  Figure 4 shows two examples of explosive failures of the Tungsten Carbide (WC) 
end-caps before the axial stress, σa, reached the compressive strengths of the end-caps (6 GPa) or 
the SiC-N specimens. 
 

(a) (b) 
Figure 4.   Premature failures of the Tungsten Carbide (WC) end-caps used as load spreaders 
before the failure of SiC-N specimens. (a) SiCN-TA03 specimen under the confining pressure, 
P=200 MPa and the axial stress, σa =2.3 GPa.  (b) SiCN-TA08 specimen under the confining 
pressure, P=100 MPa and the axial stress σa =3.5 GPa. 
 

To minimize nonuniform loading applied to the specimens and also to the end-caps, a sample 
alignment jig was designed and fabricated (Figure 5).  It consists of a pair of centering rings, WC 
end-caps, and guided threaded rods connecting centering rings coaxially.  The specimen was 
placed between the upper and the lower end-caps.  The threaded rods were holding the specimen 
under compression between two end-caps.  To reduce the stresses applied to the pistons (or push-
rods) of the test vessel, the end-caps were designed in the shape of truncated right cone.  The 
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smaller ends of the cone, in contact with the specimen, have the same diameter (12.70 ± 0.025 
mm) as the SiC-N specimen.  The other end of the cone has the larger diameter (38.10 ± 0.025) 
mm.  The larger contact area with the piston reduces the stresses applied to the pistons below the 
yield strength of the weaker piston material.  The setscrews in the centering rings adjust the 
minor misalignment between the specimen and the end-caps.  After the specimen was secured 
between the tungsten carbide end-caps, an approximately 1 mm thick impervious polyurethane 
membrane was coated on the specimen assembly (see Figure 5).  The flexible membrane allows 
the confining pressure to be applied hydrostatically on the specimen and at the same time 
prevents the confining fluid from infiltrating into pore spaces of the specimen.  To maintain 
uniform thickness of the membrane during curing, the alignment jig with the specimen was 
turned on a lathe along the axial centerline of the assembly.   
 
After the flexible membrane was cured the instrumented specimen assembly was placed in the 
triaxial test vessel capable of operating at confining pressures up to 400 MPa.  The pressure 
vessel is also equipped with 12 coaxial feed-through connectors for transmitting data from the 
strain gages to the external data acquisition system.  The inside diameter of the circular centering 
ring matches the outside diameter of the test vessel piston assuring a coaxial alignment of the 
sample jig to the axis of the loading pistons.  To provide uniform contact forces to the end-caps, 
a thin copper (or aluminum) shim disk (0.2 mm in thickness) is inserted between the piston and 
the tungsten carbide end-cap.  Figure 5 shows a schematic of the sample alignment jig and the 
gaged SiC-N specimen mounted in the triaxial pressure vessel. 
 

Figure 5.  Sample alignment jig designed for coaxial alignment of different components of the test 
set-up.  The strain gaged SiC-N specimen coated with flexible polyurethane membrane is also 
shown.  The strain gage signal was transmitted to the data acquisition system through the high-
pressure coaxial feed-through connectors. 
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The hydraulic pressure was applied to each predetermined level of confining pressure, P, at a rate 
of 0.5 MPa/s.  The servo-controller maintained the pressure level (σ1=σ2=σ3=P; where σ1, σ2,
and σ3 are the maximum, intermediate and minimum principal stresses, respectively).  After the 
confining pressure was stabilized, the specimen was axially loaded using the 4.5 MN servo-
controlled loading machine (Figure 6).  The axial compression of the specimen was carried out at 
a strain rate of ~2 × 10-5 /s. 
 
The confining pressure was measured with the pressure transducer connected to the triaxial 
pressure vessel and axial and lateral strains were measured with the strain gage rosettes mounted 
on the specimen (see Figure 3).  Eight channels of data including time, confining pressure, axial 
load, axial stroke of the piston, two axial strains and two lateral strains from the strain rosettes, 
were recorded using DATAVG, an event-triggered data acquisition program (Hardy, 1993). 
 

Figure 6.  Compression test set-up with 4.5 MN load-frame and 400 MPa pressure vessel.   
 



15

4.  Uniaxial Compression Test of SiC-N Ceramics 
 
Unconfined uniaxial compression tests have been conducted on three SiC-N specimens (all other 
tests employed lateral confining pressure).  The experimental apparatus used for the compression 
tests meets or exceeds the requirements of ASTM D2938 (“Standard Test Method for 
Unconfined Compressive Strength of Intact Rock Core Specimens”).  Specimens were loaded at 
a constant axial strain rate of 2×10-5 /s until the peak stress was reached and the specimen failed 
in an explosive manner.  Figure 7 shows a typical stress-strain plot obtained from an unconfined 
uniaxial compression test.  The axial stress (σa) is plotted against axial (εa) and lateral (εl) strains, 
respectively.  The volumetric strain, calculated as (εv = εa + 2εl), is also shown in the plot.  The 
unconfined uniaxial compressive strength of the SiC-N ceramics was calculated from:   
 

C0=Pu/πr2

where C0 is the unconfined uniaxial compressive strength in MPa; Pu is the peak load in N; and r 
is the radius of the specimen in mm.  
 
The unconfined compressive strength of the SiC-N specimens using the above equation was 
3,872 ± 126 MPa.  This strength, obtained under quasi-static loading, is significantly smaller 
than the dynamic strength of the SiC-N specimens (~6,500 MPa at ~103/s strain rate) reported by 
Wang and Ramesh (2004), illustrating rate dependence of impulsive fracture stress for brittle 
materials (Grady and Lipkin, 1980).  The strength increase for the smaller samples used by 
Wang and Ramesh may be attributed additionally to a Weibull-like dependence of strength on 
sample volume (by being more likely to contain critically large or favorably oriented flaws, large 
samples are weaker, on average, than small samples). 
 
Results from the uniaxial compression tests of SiC-N specimens are summarized in Table 1.  
Stress-strain plots from all three tests are given in Appendix A.  The specimen responds with 
remarkably linear elasticity until failure, with no evidence of hardening or progressive softening. 
The peak stress in each plot is the strength of the specimen. 
 
The linear-elastic response of the specimen can also be seen from the unloading-reloading cycle 
in Figures 7 and 8.  At about 880 MPa of axial stress in the specimen, the stress was reduced to 
220 MPa and reloaded again.  Since the response of the SiC-N specimen to the unloading-
reloading cycle is close to perfect linear-elastic behavior, the unloading and reloading loop is 
barely discernable from the initial loading curves shown in Figures 7 and 8. 
 
Figure 9 shows high-speed photographs of the SiCN-UC02 specimen subjected to uniaxial 
unconfined compressive loading.  To observe brittle fragmentation, we used a high-speed camera 
that can capture images at the rate of 27,000 frames/s.  The resulting time interval between the 
neighboring frames was approximately 37 µs.  As shown in the first frame, both ends of the 
specimen, making contact with the load-spreaders, were chipped prematurely.  This was caused 
probably by a stress concentration at the contact surface due to the mismatch of the material 
properties of the SiC-N specimen and the WC end-caps.  The second frame shows a development 
of axially oriented micro-cracks and their coalescence through the inclined shear micro-cracks.  
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The peak stress (σ1=3988 MPa) was reached about 37 µs later and the specimen explodes into 
small powder-like fragments.  The third and the fourth frames show emission of visible light 
coming out of the specimen.  It appears that the emission of the light resembles the phenomenon 
of triboluminescence that converts the mechanical shock energy into light.   
 
The failure mode and the processes observed in the quasi-static uniaxial compression tests were 
similar to the ones obtained from the dynamic stress condition using the Kolsky bar (Wang and 
Ramesh, 2004).  Regardless of the difference in strain rates (~2×10-5/s vs. ~103/s) used for 
testing, the common mode of failure can be described as the coalescence of longitudinal cracks 
before the axial splitting of the specimens.  
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Figure 7.  Stress-strain plot for the uniaxial compression test of specimen SiCN-UC01.  εa, εl, and εv
are axial, lateral, and volumetric strains, respectively.  P is the confining pressure. 
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Figure 8.  Zoomed-in unloading-reloading cycle for the uniaxial compression test of specimen 
SiCN-UC01 shown in Figure 7.  εa, εl, and εv are axial, lateral, and volumetric strains, respectively.  
P is the confining pressure. 
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Figure 9.  Explosive failure of the SICN-UC02 specimen (12.7 mm in diameter and 25.4 mm in 
length) subjected to the unconfined uniaxial compressive stress condition (σ1=3988 MPa at failure and 
σ2= σ3=0). 
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Table 1. Summary of uniaxial and triaxial compression tests for SiC-N specimens.

Specimen Diameter Length P σf E ν I1
3
1I 2J

no. (mm) (mm) (MPa) (MPa) (GPa) (MPa) (MPa) (MPa)
SiCN-UC01 12.7 25.4 0 3738 464 0.156 3738 1246 2158
SiCN-UC02 12.7 25.4 0 3988 463 0.153 3988 1329 2302
SiCN-UC03 12.7 25.4 0 3890 467 0.154 3890 1297 2246
SiCN-TA01* 12.7 25.4 200 6326 NA NA 6726 2242 3537
SiCN-TA02 12.7 25.4 350 5948 466 0.161 6648 2216 3232
SiCN-TA03** 12.7 25.4 200 NA** 442*** NA NA** NA** NA**
SiCN-TA04 12.7 25.4 100 5508 480 0.167 5708 1903 3122
SiCN-TA05 12.7 25.4 200 6120 480 0.169 6520 2173 3418
SiCN-TA06 12.7 25.4 350 6422 484 0.172 7122 2374 3506
SiCN-TA07 12.7 25.4 350 6514 482 0.173 7214 2405 3559
SiCN-TA08** 12.7 25.4 100 NA** 474*** 0.159*** NA** NA** NA**
SiCN-TA09 12.7 25.4 100 5283 478 0.166 5483 1828 2992

P (=σ2=σ3) = lateral confining pressure

σf = failure stress (maximum σ1)
E = Young's modulus
ν = Poisson's ratio
I1 =σ1+σ2+σ3 at failure= σf+2P

3
1I

= mean stress

32

P
J f −

=
σ

* - Strains were not measured.
** - Premature failure of the tungsten carbide end-caps at 2284 MPa for SiCN-TA03 and 3477 MPa for SiCN-TA08
*** - Uncertain value due to premature failure of the WC end-caps
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5.  Mechanical properties of SiC-N ceramics  
 
Young’s modulus, E, is the proportionality constant between stress and strain in the elastic 
portion of the uniaxial compression test: 
 

E = |σa / εa|

where σa is the axial stress and εa is the axial strain. Young’s modulus was determined using 
least squares linear regression.  Figure 10 shows linear segments of the stress-stain plots and the 
fitted straight lines of all three uniaxial compression tests (SiCN-UC01, 02, and 03).  The 
average value of the Young’s modulus was E=465 ± 2 GPa.  Table 1 also shows the effect of a 
confining pressure on E.  As the confining pressure was increased, Young’s modulus also 
increased.  The rate of increase in E was about 14 GPa per 100 MPa increase in the confining 
pressure up to 100 MPa.  This rate was reduced to about 1.6 GPa over the range of the confining 
pressure, 100 MPa <P<350 MPa.  The results are summarized in Table 1 and all three plots used 
for the determination of E are listed in Appendix B, independently. 
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Figure 10.  Linear segments of the axial stress (σa) - axial strain (εa) plot obtained during the 
unconfined compression tests for the SiC-N specimens.  The Young’s modulus, E, was obtained as 
the slope of the best-fit straight line.  
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Poisson’s ratio, ν, was obtained from the εa-εl plot of each test.  The linear elastic segment of the 
stress-strain plot was isolated and the lateral strain is plotted against the axial stress within the 
isolated range.  The slope of the best-fit line was obtained to represent ν.

ν = |εl / εa|

Figure 11 shows the linear-elastic segments of the εa-εl plot for the SiC-N specimens obtained 
from all three uniaxial compression tests (SiCN-UC01, 02, and 03) used previously for the 
determination of E.  The average slope from all three tests is considered as a representative value 
of the Poisson’s ratio, ν=0.15 ± 0.002.  The εa-εl plot and the fitted straight line for all uniaxial 
compression tests are given in Appendix C.  The determined Poisson’s ratios from all three 
uniaxial compression tests of the SiC-N specimens are summarized in Table 1.   
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Figure 11.  Linear segments of the lateral strain (εl)-axial strain (εa) plot obtained during the 
unconfined compression tests for the SiC-N specimens.  The Poisson’s ratio, ν, is obtained as the 
absolute value of the slope for the best-fit straight line.
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6.  Triaxial Compression Test of SiC-N ceramics 
 

Triaxial compression experiments have been conducted on nine SiC-N specimens.  The 
specimens were loaded until peak load was reached at failure.  The compressive strength of the 
specimen subjected to a triaxial loading condition (σ1≥σ2=σ3) was calculated based on the same 
equation used for obtaining the uniaxial compressive strength of the SiC-N ceramics (see 
Chapter 4).   
 
A typical stress-strain plot obtained during the triaxial compression test of the SiCN-TA07 
specimen subjected to 350 MPa confining pressure is shown in Figure 12.  Typically, the stress-
strain plot for a SiC-N specimen is composed of three segments.  The first segment is the 
hydrostatic compression of the specimen up to the predetermined confining pressure, P (=350 
MPa in Figure 12).  The next segment is the triaxial linear-elastic response, maintained until the 
peak stress is achieved.  The last short segment is the sudden failure of the specimen 
accompanied by precursory acoustic emission from the propagating fractures in the specimen.   
The volumetric strain (εv = εa + 2εl) is shown in each plot.  The results from the triaxial 
compression tests of SiC-N specimens are summarized in Table 1.  Stress-strain plots from all 
nine tests are given in Appendix D. 
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Figure 12.  Stress-strain plot obtained during a triaxial compression test of specimen SiCN-TA07 
subjected to the confining pressure of P=350 MPa.  The axial stress (σa) is plotted against axial (εa), 
lateral (εl), and volumetric (εv) strains, respectively.  The volumetric strain was calculated from the 
axial and lateral strains (εv = εa + 2εl).  Also shown are the unloading and reloading loops. 
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(a) (b) 
 

Figure 13.  Failed SiC-N specimens subjected to triaxial compressive loading. (a) SiCN-TA07 
specimen subjected to the confining pressure of P=350 MPa and the axial stress of σa=6514 MPa (b) 
Unwrapped SiCN-TA01 specimen subjected to the confining pressure of P=200 MPa and the axial 
stress of σa =6326 MPa. 

Figure 13 shows typical fracture networks found in the failed SiC-N specimens under the triaxial 
stress condition.  The fractures are oriented predominantly in axial direction.  However, the 
network of axial fractures connected each other through shear fractures between them leaving 
two semi-conical intact pieces shown in Figure 13 (b).   
 
Figure 14 shows an SEM micrograph of the failed SiCN-TA04 specimen under the triaxial stress 
condition (σ1=5508 MPa at failure and P=σ2= σ3=100 MPa).  This picture is taken in a polished 
plane parallel to the circular end face of the specimen.  It appears that micro-cracks are branched 
and coalesced with each other.  Along the open micro-cracks, we can observe the disintegrated 
grains due to stress relief.  Accumulation and coalescence of the micro-cracks and disintegration 
of the grains led to the macroscopic failure of the specimen recorded as peak stresses shown in 
Appendix D.  
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Figure 14.  The SEM micrograph of the failed SiCN-TA04 specimen under the triaxial stress condition 
(σ1=5508 MPa at failure and P=σ2= σ3=100 MPa). 
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7.  Shear Failure Criteria of SiC-N Ceramics 
For rocks and rock-like materials (e.g. concrete) having non-negligible porosity, variation of 
shear stresses at failure with respect to mean stresses can be described using a cap model 
(Sandler and Rubin, 1979 and Fossum et al., 1995).  For ceramics like SiC, having porosity less 
than 0.2%, the cap feature in such models is unnecessary, but the limit function (Fossum and 
Brannon, 2004) that describes the peak attainable stresses in terms of all three stress invariants 
seems appropriate. Triaxial testing determines the part of the limit surface corresponding to a 
fixed Lode angle of 30 °. Thus, at this fixed Lode angle, the shear strength may be expressed as a 
function of the first stress invariant (trace of the stress, 1I ).  
 
In triaxial compression tests, the axial stress is the major principal stress, σ1, and the confining 
pressure, P, is simultaneously the intermediate and minimum principal stress, σ2 and σ3. In this 
case, the first stress invariant, I1, and the square root of the deviator invariant, J2, at failure 
(σ1=σf) are 

PI f 23211 +=++= σσσσ

36
)()()( 2
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2
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Values of I1, mean stress 31I , and 2J for different confining pressures are listed in Table 1.  
During the shear failure of the specimens, the state of stress can be represented as a shear failure 
criterion represented empirically by the following limit function (Fossum and Brannon, 2004; 
modified after Sandler and Rubin, 1979 and Fossum et al., 1995). 
 

2 1
2 1 3 4 1

a IJ a a e a I−= − +

where the ka are empirical parameters to be determined for the SiC-N ceramic from uniaxial and 
triaxial compression tests at different mean stresses.  
 
We used a nonlinear regression analysis to determine the unknown parameters, which minimized 
the sum of the squares of errors between the model-predicted values and the observed 

2J values for different 31I values (Figure 15).  For the SiC-N ceramics the shear failure 
criterion is best represented within the range of pressures for the triaxial testing as follows: 
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Figure 16 shows an expansion of the quasi-static failure criterion by including the plate-impact 
test data (Vogler et al, 2004) on the SiC-N specimens.  The best-fit shear failure surface for the 
SiC-N ceramic specimens can be represented as follows: 
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As the mean stress (I1/ 3) increases, the value of 2J at failure increases rapidly in the region of 

quasi-static strain rate.  However, the 2J approaches an asymptotic level of 6,129 MPa as the 
mean stress approaches 30,000 MPa.  
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Figure 15.  Shear failure criterion determined by the least square fit of the triaxial compression 
data for the SiC-N ceramics to the exponential shear yield surface of the cap model. 
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Figure 16.  Failure criterion determined by the least square fit of the triaxial compression data (this 
report) and the shock experiment data (Vogler et al., 2004) for the SiC-N ceramics. 
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8.  Conclusions  
 
To establish the mechanical properties and the failure criteria of the silicon carbide ceramics 
(SiC-N), a series of quasi-static compression tests has been completed using a high-pressure 
triaxial pressure vessel and the unique sample alignment jig.  The results from laboratory 
constitutive experiments can be summarized as follows:  

• The uniaxial unconfined compressive strength of SiC-N was 3872 ± 126 MPa.   
• The elastic properties for the SiC-N were determined based on three unconfined 

compression tests: 
 

Young’s modulus E=465 ± 2 GPa 
Poisson’s ratio ν=0.16 ± 0.006 

 
• Results from the uniaxial and the triaxial compression tests were used to obtain the 

failure criteria of SiC-N ceramics using the cap plasticity model.  For quasi-static data, 
the failure criterion is represented as follows: 
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For quasi-static data and the plate impact test data provided by Vogler et al. (2004), the 
failure criterion is represented as follows: 
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where I1 and 2J are values in MPa. 
 
The dependence of quasi-static failure strength of SiC-N ceramics on the confining pressures has 
been determined for the first time.  Comparing and integrating these results with Kolsky bar data 
(e.g. Wang and Ramesh, 2004) and VISAR data (Vogler et al., 2004) significantly advances 
progress toward calibration of ceramics models for penetration applications. 
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APPENDIX A 
 

Stress-strain plots obtained from the uniaxial  / 
triaxial compression tests of SiC-N specimens 

(σa-axial stress, εa-axial strain, εl-lateral strain, εv-
volumetric strain, and P-confining pressure) 
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APPENDIX B 
 

Young’s modulus, E, determined from the 
uniaxial / triaxial compression tests of SiC-N 

specimens (σa-axial stress, εa-axial strain, and P-
confining pressure) 
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APPENDIX C 
 

Poisson’s ratio, ν, determined from the uniaxial 
compression tests of SiC-N specimens 

(εa-axial strain, εl-lateral strain, and P-confining 
pressure) 
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APPENDIX D 
 

A review of published data for SiC 
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Information in this appendix is taken from a memo (dated 12/14/2004) from Diane Meier to Moo 
Lee, entitled “Results of the data mining for SiC”. 
 
Despite the fact that many people are interested in silicon carbide (SiC) and despite the fact that 
the material has many useful applications, it is lacking data to determine many of its mechanical 
properties.  This appendix presents the reader with an overview of data that has already been 
collected for the Cercom material, SiC-N.  This appendix also includes data for Cercom SiC-B, 
since it is similar to SiC-N in many respects.  SiC-N is a refined product of SiC-B that uses an 
organic binder.  Table E-1 shows properties listed by Cercom for both SiC-B and SiC-N.   
 

Table E-1.  Typical properties of SiC-B and SiC-N (Cercom, 2003). 
 SiC-B SiC-N 

Bulk Density (g/cm3) 3.20 3.20 
Average grain size (µm) 3-5 3-5 
Flexural Strength, Ksi 

(4-Pt MOR)           MPa 
70 
560 

85 
580 

Characteristic Strength (MPa) 595 600 
Weibull Modulus (m) 11 17 

Elastic Modulus (E) (GPa) 460 460 
Poisson’s Ratio (ν ) 0.16 0.16 

Hardness (kg/mm2)(Knoop 0.3kg) 2450 2450 
Fracture Toughness (MPa-m1/2)

(Chevron Notch) 
4.4 4.7 

Thermal Expansion (10-6/C) (RT-
1000 C) 

4.5 4.5 

Thermal Conductivity  (W/m-K) @ 
RT 

130 130 

Electrical Resistivity (W-cm) >104 >104

Table E-2 presents the data collected from three experiments.  In each experiment, work was 
done to determine key properties, such as density, in addition to key mechanical properties.  The 
table contains information for both SiC-B and SiC-N.  The TARDEC report contained 
information for 18 different silicon carbide materials.  Of the eighteen there were three separate 
SiC-B materials, which are included in Table E-2.  The only noted differences are in the grain 
size and the density (Note: There are other differences between the materials, but the differences 
are in strength measurements and those differences are believed to be a function of the density 
differences).   
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Table E-2.  Collection of data from various experiments, showing the properties of SiC. 
TARDEC Technical Report, Holmquist et al. (1999) Bartkowski and 

Spletzer (2001) 
Dandekar and 
Bartkowski 
(2002) 

Description 
 

SiC-B SiC-B SiC-B SiC-N SiC-N SiC-B SiC-B SiC-N 

Average Grain Size 
(µm) 

2 4 5 4 5.0 2.8   

Density  
(/cm3)

3.220 3.150 3.180  3.215 3.227 3.215 
±0.002 

3.22 
±0.001 

Longitudinal Velocity 
(km/s) 

 12.220 12.250 12.198 
±0.026 

12.262 
±0.001 

Shear Velocity  
(km/s) 

 7620 7765    7.747 
±0.018 

7.77 
±0.005 

Bulk Velocity  
(km/s) 

 8480 8350    8.29 
±0.03 

8.354 
±0.006 

Young’s Modulus, E 
(GPa) 

427 433 427  448 454 448.4 
±2.1 

454.0 
±0.6 

Shear Modulus, G 
(GPa) 

 183 195  193 195 193 
±0.9 

195 
±0.2 

Bulk Modulus K  
(GPa) 

 227 223  221 225 221.1 
±1.8  

225.2 
±0.3 

Poisson Ratio  0.182 0.14  0.162 0.164 0.162 
±0.003 

0.164 
±0.001 

Compressive Strength 
(GPa) 

 3.41      

Pore Size  
(µm) 

 2.3 1.9   

Pore Volume Fraction 
 

0.002  

Hydrostatic Compression

Strössner et al. (1987), Aleksandrov et al. (1992), Bassett et al. (1993), and Yoshida et al. (1993) 
have reported results for hydrostatic compression of 6H-SiC.  In the paper written by Dandekar 
(2002), it was found that 6H-Sic is manufactured by Cercom and is marketed as SiC-B, so the 
data for 6H-SiC has been included in this data report.  Table E-3 has the bulk modulus data for 
6H-SiC, as reported by Dandekar (2002).  The data in Dandekar’s paper comes from two 
separate experiments: Bassett et al. (1993) and Yoshida et al. (1993)  B0 represents the bulk 
modulus, B0

’ is the pressure derivative of the bulk modulus and Pmax is the maximum pressure to 
which the experiments were carried out (Dandekar, 2002).  Bassett et al. (1993) and Yoshida et 
al. (1993) confined the SiC material in a mixture of sodium chloride and gold, and methanol, 
ethanol and water respectively, to produce a hydrostatic pressure environment in their samples 
(Dandekar, 2002). 
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Table E-3.  Data from various static pressure investigations for SiC (Dandekar, 2002). 
 

B0 (GPa) 
 

B0
’ Pmax (GPa) 

 
Reference 

6H-SiC 230 ± 4 4.0 (assumed) 68 Bassett et al. (1993) 
6H-SiC 260 ± 9 2.9 ± 0.3 95 Yoshida et al. (1993) 

Figure E-1 shows the mean volumetric compression of 6H-SiC from the studies completed by 
Bassett et al. (1993) and Yoshida et al. (1993).  The pressure values were calculated at various 
volumetric compressions, using a series of equations not included in their report.   
 

Figure E-1.  Compression values of 6H-SiC from high-pressure x-ray diffraction data (Dandekar, 
2002). 
 
Hydrodynamic (Shock) compression

Sekine and Kobayashi (1997, 1998) measured the shock compression of 6H-SiC to 160 GPa, 
using the 6H-SiC (SiC-B) material manufactured by Cercom.  The hydrodynamic compression 
of SiC-B is represented by the bulk modulus and the pressure derivative of the bulk modulus; 
this is information is summarized in Table E-4.  The information in this table was reported by 
Dandekar (2002) and was collected from two studies completed by Sekine and Kobayashi (1997, 
1998).  In Table E-4, HEL represents the Hugoniot Elastic Limit. 
 

Table E-4.  Density, HEL, Bo, Bo’ for 6H-SiC used in the shock compressions completed by 
Sekine and Kobayashi (1997, 1998). 

 
ρ0 (Mg/m3) 

 
HEL (GPa) 

 
B0 (GPa) 

 
B0

’ Pmax (GPa) 
6H-SiC 3.22 18.0 ± 0.7 230** 4.6 105 

**Sekine and Kobayashi (1997, 1998) took this value from the work done by Bassett et al.
(1993) for their analyses (Dandekar, 2002). 
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Figure E-2 shows a plot of shock compression data for various forms of SiC, generated by 
various investigators.  Only Sekine and Kobayashi performed shock compression tests on the 
SiC-B material.  The data points from their investigations are highlighted in red, yellow and 
green.  In this figure, the data points denoted by HEL are at or below the HEL; PL1 indicates the 
inelastic deformation of SiC, and PL2 indicates the transformed phase of SiC (Dandekar, 2002). 
The curve in Figure E-2 represents the compression of 6H-SiC (SiC-B) obtained by using the 
values of bulk modulus and its pressure derivative given in Table E-4 (Dandekar, 2002). 

Figure E-2.  Shock compression data for SiC (Dandekar, 2002). 
 

Shear Strength

Bourne et al. (1997) and Feng et al. (1998) measured the shear strength of SiC-B under shock 
compression.  The shock compression was measured through the simultaneous measurements of 
longitudinal and lateral stress.  Dandekar (2002) also calculate the values of shear stress using a 
system of equations not included in his report.  These calculated values were then compared to 
the values obtained by measurements done by Bourne et al. (1997) and Feng et al. (1998).  The 
calculated and measured values are summarized in Table E-5.  On the table, µ is defined as 
((V0/V)-1).  There are four separate studies represented in this table: Feng et al. (1996, 1998), 
Grady and Kipp (1993) and Bourne et al. (1997). 
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Table E-5.  Measured and calculated values of shear stress as reported in Dandekar (2002). Values 
were obtained under plane shock wave compression. 

Stress (GPa) Calculated (GPa) Experiment 
No. Longitudinal Lateral Shear 

 
µ Pressure Shear 

Feng et al. (1998) 
1 10.20 1.84 4.18 0.0209 4.80 4.05 
2 12.90 2.34 5.28 0.0264 6.12 5.09 
3 15.00 3.40 5.80 0.0312 7.29 5.78 
4 16.00 3.60 6.20 0.0336 7.89 6.09 
5 18.80 5.10 6.85 0.0412 9.80 6.75 
6 20.90 6.94 6.98 0.0479 11.53 7.03 
7 24.20 10.40 6.90 0.0610 15.03 6.88 

Crawford’s experiments reported by Feng et al. (1996) 
SC-3 (a) 26.8   0.0875 22.8 ± 0.5 3.0 ± 0.4 
SC-4 (a) 39.6   0.1314 36.9 ± 1.1 2.0 ± 0.8 
SC-3 (b) 28.5   0.0785 20.2 ± 0.4 6.2 ± 0.3 
SC-4 (b) 40.8   0.1237 34.4 ± 1.0 4.8 ± 0.8 

Grady and Kipp (1993) 
CE-4 27.6   0.075 19.2 ± 0.4 6.3 ± 0.3 
CE-5 36.3   0.1087 29.4 ± 0.8 5.2 ± 0.6 
CE-31 48.8   0.1534 45.0 ± 1.5 2.8 ± 1.1 

Bourne et al. (1997) 
1 16.7 3.3 6.7    
2 21.2 4.1 8.6    
3 23.4 6.7 8.4    

Plate Impact Test Data

Grady and Moody (1996) performed plate impact tests on various silicon carbide materials, 
including SiC-B and SiC-N.  Table E-6 contains the data for four of the materials tested by 
Grady and Moody (1996); the SiC-B material is represented by the data for Material No. 107, 
which is highlighted in yellow.  The SiC-N material is represented by the data for Material No. 
111, which is highlighted in blue.  Figure E-3 contains the velocity profiles for the three SiC-B 
tests found in Table E-6.  The velocity profiles reflect the uniaxial strain loading and unloading 
behavior of the material (Holmquist et al. 1999). 
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Table E-6.  Summary of experimental plate impact initial conditions and results from Grady and 
Moody (1996). 
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Figure E-3.  Velocity profiles from Grady and Moody (1996) for tests 1420-1425. 
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Dandekar and Bartkowski (2001) performed spall experiments on the SiC-B and SiC-N 
materials.  They used two experiment designs: one where the particle velocity profile was 
recorded at a stationary plate poly-methyl-meth-acrylate (PMMA) window interface and one 
where the free-surface velocity profile of the stationary plate is monitored and the velocity 
profiles were recorded by a 4-beam velocity interferometer system.  Figure E-4 shows the 
velocity profiles from the experiments completed by Dandekar and Bartkowski (2001).  These 
velocity profiles were used for the calculation of spall strengths.  The results of the spall 
experiments for SiC-B and SiC-N are found in Tables E7-E10 and Figure E-5 shows the wave 
profiles for three of the spall strength experiments completed on SiC-N. 
 

Table E-7.  Results for the spall experiments for SiC-B from Dandekar and Bartkowski (2001). 

Table E-8.  Summary of the results from the spall experiments for SiC-B from Dandekar and 
Bartkowski (2001). 
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Table E-9.  Summary of the results for the spall experiment for SiC-N as reported by Dandekar 
and Bartkowski (2001). 

Table E-10.  Summary of the spall experiment results for SiC-N as reported by Dandekar and 
Bartkowski (2001). 
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Figure E-4.  Velocity profiles in SiC from Dandekar and Bartkowski (2001). 
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Figure E-5.  Free-surface velocity profiles for SiC-N as reported by Dandekar and Bartkowski 
(2001). 
 

Penetration Test Data

Table E-11 summarizes the penetration results from an experiment completed by Orphal and 
Franzen (1997).  Information about the targets and penetrators can also be found in Table E-11.  
On the table, primary penetration is the depth penetrated when the penetrator is just consumed. 
The total penetration is the total depth penetrated when the penetration event is complete.  The 
results of the study are also represented graphically, in Figure E-6.  Material No. 4 is SiC-B, but 
it is a slightly different material from the SiC-B used in plate impact experiments. 
 

Figure E-6.  Graphic representation of the penetration results.  Primary penetration and Total 
Penetration vs. Impact Velocity for tungsten penetrators impacting confined SiC, Orphal and 
Franzen (1997). 
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Table E-11.  Summary of the penetration results, Orphal and Franzen (1997). 
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Holmquist and Johnson (2002) also performed plate impact tests on the SiC-B material.  Figure 
E-7 is a comparison of the calculated values and experimental results obtained by Holmquist and 
Johnson (2002) for two compressive plate impact tests and two tensile plate impact tests.  The 
equations used for the calculations are not included in this report.  The tests completed by 
Holmquist and Johnson involves the plate impact of a silicon carbide impactor on a silicon 
carbide target; in this study, the silicon carbide target is SiC-B from Cercom. 
 

Figure E-7.  A comparison of the computational and experimental results found by Holmquist and 
Johnson (2002). 
 

Information in Table E-12 was taken from a report written by Pickup and Barker (2000).  
However, upon inspecting this report, the Pickup and Barker’s source for the quasi-static 
compression data is unclear, since the paper only discusses the shock compression tests they 
performed on the SiC-B material.  Pickup and Barker only studied the SiC-B material. 
 

Table E-12.  Physical properties of SiC-B as reported by Pickup and Barker (2000). 
Compressive strength 

(GPa) 
Density 
(kg/m3)

E (GPa) 

 

G (GPa) 

 

ν
Mean 
Grain 

Diameter
Quasi-static 
 

(ε& ~10-3/s) 

Split 
Hopkinson 
Bar 

(ε& ~103/s) 
SiC-B 3238 456 196 0.16 2.90±2.4 5.15±0.25 8.17±0.16 
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Very little shock or quasistatic data are available for SiC-N. Relative to SiC-N, the SiC-B 
ceramic has been studied more extensively.  Some of the papers cited in this appendix refer to 
other publications that purportedly include quasi-static testing data for SiC-B; however, in most 
cases, these papers only had additional information on plate impact testing.  Hence, greater 
attention to quasistatic testing appears to be needed for both SiC-N and SiC-B.  The SiC data 
summarized in this appendix have been drawn from existing journal publications and online 
research databases.  A fair amount of recent work has been done on both SiC-B and SiC-N, but 
that the information is not yet available in the open literature. 
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APPENDIX E 
 

List of Data and Supplemental Files Archived in 
Webfileshare System for SiC-N 
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List of files archived in the WEBFILESHARE system (https://wfsprod01.sandia.gov). 
Folder Name File Name Description 

/TARGET/SICN 
 

SIC-N-SAND.doc This SAND report 

/TARGET/SICN SIC-N-master.xls 

Master data file consists of the following four 
worksheets: 
 
Summary: SiC-N constitutive testing results 
 
Test Se-up: Pictures of test set-up and 

specimen assembly 
 
Uniaxial Compression: Uniaxial 

compression test data for SICN-UC01, 02, 
and 03 consisting of time, axial stress, 
lateral strain, and volumetric strain 

 

Triaxial Compression: Triaxial compression 
test data for SICN-TA01, 02, 03, 04, 05, 
06, 07, 08, and 09 consisting of time, 
confining pressure, axial stress, lateral 
strain, and volumetric strain 

 

/TARGET/SICN SIC-N-data-sheet.zip 

Laboratory data sheets for the following tests:
SICN-UC01, UC02, UC03, TA01, TA02, 
TA03, TA04, TA05, TA06, TA07, TA08, 
and TA09. 
 

https://wfsprod01.sandia.gov/
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