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ABSTRACT 
     The principle of material frame indifference requires 
spatial stresses to rotate with the material, whereas reference 
stresses must be insensitive to rotation. Testing of a classical 
uniaxial strain problem with superimposed rotation reveals 
that a very common approach to strong incremental objectivity 
taken in finite element codes to satisfy frame indifference 
(namely working in an approximate un-rotated frame) fails 
this simplistic test. A more complicated verification example 
is constructed based on the method of manufactured solutions 
(MMS) which involves the same character of loading at all 
points, providing a means to test any nonlinear-elastic 
arbitrarily anisotropic constitutive model. 
 

INTRODUCTION 
    The principle of material frame indifference (PMFI) 
requires that if a deformed material is rotated, then the spatial 
tractions and stresses should rotate along with it whereas the 
reference stresses must be insensitive to the rotation. A review 
of material frame indifference is already presented in [1]. This 
concept is different from basis indifference. The difference 
between basis indifference and frame indifference is the initial 
configuration. Figure 1 represents a simple shear under basis 
rotation and superimposed rotation. Under basis rotation, both 
the initial configuration and the deformed configuration are 
rotated whereas under superimposed rotation, only the 
deformed configuration is rotated. The PMFI demands that the 
stress for deformation in Fig. 1.(b) should be same as Fig. 
1.(a) except rotated appropriately. PMFI does not guarantee 
the accuracy of the material model. It is one of the physical 
principles tested to check material models for consistency 
under superimposed rotations and translations. 
   Verification & Validation of development codes with 
complicated numerical constitutive models is important for 
testing the accuracy and robustness of these methods [3]. 
Verification is a process that is used to evaluate the 
correctness of the solution of the governing equations in the 
code. Validation is a quality control process of establishing 
evidence that the equations themselves provide an acceptable 
description of reality with respect to intended requirements, 

and is done by comparing with the experimental data. The 
MMS is an accepted standard of verification testing in the 
scientific community that has been used extensively in fluid 
mechanics [4], but is rarely demonstrated in solid mechanics 
because of the increased mathematical complexity. MMS is a 
process of determining the external body force required to 
achieve a pre-decided deformation analytically. Then the code 
is verified by running it with the computed body force and 
demonstrating that the pre-decided deformation is achieved. 
  This paper will first focus on PMFI where a uniaxial strain 
problem with superimposed rotation is tested with and without 
a frame indifferent constitutive model. An analytical solution 
for the simplest possible constitutive model (linear elasticity) 
is sufficient to demonstrate that a common approximation 
used in implementations of strong incremental objectivity [6] 
results in failure to satisfy the PMFI. Subsequently a MMS 
approach will be used to construct a more complicated 
verification example of large deformation and large rotation of 
a thick vertical beam that will serve as a means to test 
arbitrarily nonlinear anisotropic elastic constitutive model for 
simultaneous basis and frame indifference. 
 

 
Figure 1: (a) Basis rotation (b) Superimposed rotation. 
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NOMENCLATURE 

nσ  Cauchy stress at time step n 

nD  Symmetric part of the velocity gradient at time 
step n 

nR  Rotation matrix at time step n 

b  Body force vector 

a  Acceleration vector 

  Material density 

  Stretch 

*  Lame modulus 

  Shear modulus 

SINGLE ELEMENT TEST 
The concept of frame indifference is illustrated using a 
classical single element test [7]. The test problem is described 
as follows: 

 The element undergoes uniaxial strain (along the 
x-axis) from time t=0 to t=1. 

 This deformed configuration undergoes 
superimposed rotation of 90 degrees (about the 
z-axis) from time t=1 to t=2. 

The exact solution during the second leg is given by: 

T
RσRσ      (1) 

where  
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σ is the un-rotated stress, A is the axial stress and L is the 

lateral stress. 
Thus 
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Figure 2. shows the plots of normalized stress components vs. 
time for the above mentioned analytical solution. This shows 
that, although the principal stresses do not change during 
rotation, the stress components must vary to account for 
rotation of the principal directions of stress. 
  The Uintah computational framework [8] at the University of 
Utah was used for all the numerical simulations shown in this 
paper. The hypoelastic constitutive model in the Uintah 
framework was chosen to run the test problem. The Cauchy 

stress σ  is governed by some function of the symmetric part 

of the velocity gradient D . This can be represented as: 

)(1 nnn g Dσσ      (2)                                              

Since this formulation includes no objective rates or Lie 
transformations to an un-rotated configuration, it is well 
known to violate frame indifference. Figure 3. shows the 
model prediction for the stress (normalized by 1.06 times the 
peak stress) vs. time. During the first time interval when the 
  

 
Figure 2: Normalized stress components vs. time for the 

analytical solution 
 

element undergoes uniaxial strain, the plot shows correct 
linear response of the 11, 22 and 33 components of stresses 
with the shear component being zero. During the second time 
interval, however, when the deformed element undergoes 
superimposed rotation, the symmetric part of the velocity 
gradient is zero. Hence the values of all the stress components 
remain constant and equal to that of the value at the end of the 
first time interval. This reveals that this constitutive model is 
not self consistent under superimposed rotations and therefore 
fails the frame indifference test. 
   To satisfy frame indifference, several constitutive models in 
the Uintah framework used an approximated un-rotated frame. 
A flawed schema, summarized in Fig. 4., had been as follows: 

 Stress and symmetric part of the velocity gradient are 
initialized at the beginning of the step. 

 The stress and symmetric part of the velocity gradient 
needed as input to the constitutive model were un-
rotated using the polar rotation at the end of the step. 

 The updated stress coming out of the constitutive 
model was re-rotated using the same rotation (i.e., at 
the end of the step). 

The test problem was run on one of the constitutive models in 
Uintah that requires the host code to apply the model in an un-
rotated frame to satisfy frame indifference.  
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Figure 3: Normalized stress components vs. time for 

hypoelastic constitutive model 
    

 
Figure 4: Flawed stress update algorithm 

 
Figure 5. shows the normalized stress components vs. time 
plot for this model when the flawed schema of Fig. 4 was used 
in the host code. The results reveal that the constitutive model 
failed this simplistic test for frame indifference. The model 
behaves as expected for the first time interval when the 
element is under uniaxial strain. During the second time 
interval, since the symmetric part of the velocity gradient is 

zero, the constitutive model correctly predicted that the un-
rotated stress remained unchanged. Therefore, the values of 

nσ  and 1nσ are equal. Since the stress is un-rotated by 

1nR before sending it to the constitutive model and then re-

rotated by the same amount after coming out of the 
constitutive model, the value of spatial Cauchy stress 

1nσ does not change as it should during this interval. 

 
Figure 5: Normalized stress components vs. time for the 
constitutive model that uses the un-rotation schema as in 

Fig. 4. 

 
Hence the values of all the stress components remain constant 
and equal to that of the value at the end of the first time 
interval. Reducing the time step to a very small value will not 
solve the problem because of the use of the same rotation 
tensor for both  operations, which implies an erroneously 
constant stress regardless of the time step. To rectify this 
problem, the following changes were made to the un-rotation 
schema 

 The stress and symmetric part of the velocity gradient 

are un-rotated using nR . 

 The stress output from the constitutive model is re-

rotated using 1nR . 

  Figure 6. shows that this corrected incremental strong 
objectivity algorithm satisfies the principle of material frame 
indifference because the stresses now correctly rotates with 
the deformed material. The following observations can be 
made from Fig. 6.: 

 At the end of the second time interval, the value of 

11  is equal to the value of 22 at the end of the first 

time interval. 

 At the end of the second time interval, the value of 

22  is equal to the value of 11 at the end of the first 

time interval. 

 During the second time interval, the value of 33 is 

zero because it’s the out of plane stress. Hence, the 
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value of 33 remains constant and is equal to that of 

the value at the end of the first time interval. 

 During the second time interval, the 12 has a peak 

value of 
2

2211  
at the half-time of the second 

interval. 
 

 
Figure 6: Normalized stress components vs. time for the 

constitutive model that uses the changed un-rotation 
scheme 

 
   Therefore, this test reveals that, for the problems involving 
large material rotation, different polar rotation tensors need to 
be used. Penetration simulations, for example, involve large 
material deformations and rotations. A penetration simulation 
was run in Uintah with and without the change to the stress 
un-rotation and was compared. Figure 7. shows that 
normalized penetration depth vs. time was not significantly 
improved by the frame indifference bug correction, but work 
is underway to assess the influence of the changes on material 
response, such as damage along the penetration channel, that 
is expected to be more sensitive to frame indifference errors.  

METHOD OF MANUFACTURED SOLUTIONS 
   The Method of manufactured solutions is a systematic 
process of verifying the development codes by running them 
with the analytically computed external body force and 
demonstrating the pre-decided deformation. A simple 1-D 
example for MMS is already available [9] which is 
constructed based on [10]. This method had been successfully 
used for verification testing in the scientific community 
including fluid heat transfer [12], fluid-structure interactions 
[13] and extensively in fluid mechanics. This section will 
focus on analytically determining the external body force 
required for large deformation and large rotation of a thick 
vertical beam using this technique. This problem will have the 
same character of loading at all instants of time as described in 
the single element section. At all points, the body will undergo 
a uniaxial strain under superimposed rotation. Figure 8. shows 
the snapshot of the deformation of bending beam in time. 

The motion is governed by the equation: 

 abσ          (3) 

where a is the acceleration and b is the body force. In the 

MMS, the deformation is pre-decided so that acceleration is 
known. Moreover, for an elastic material model, the stress is a 
known function of deformation, which allows the stress 

 
Figure 7: Normalized penetration depth vs. time 

comparison 

 
Figure 8: Snapshot of the deformation in time. 

divergence to be considered as known. Therefore, the goal is 
to find these functions and substitute the results into Eq. (3) to 
find the body force (which, in the MMS, then is used as the 
forcing function in the code to see if the prediction recovers 
the pre-decided deformation). Indicial notation for the body 

force b  in the above equation is given by  
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where if is the i
th

 component of divergence of the Cauchy 

stress. The bending of the beam of height H and base B is 

parameterized by a time-varying parameter  [t] equal to the 

angle of the top surface of the beam. The corresponding 
mapping from an initial position X to deformed position x is 
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As can be confirmed by direct substitution, the deformation 

gradient decomposed into rotation and stretch URF  , is 

computed by the following sequence of calculations where 

 is the angle of rotation at the material point of interest,  is 

the amount of stretch in the 2-direction, R is the rotation 

tensor and U is the stretch tensor. 
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The following section will derive the contribution of the force 
from the material acceleration and from the stress divergence. 
Then these values can be substituted in Eq. (4) to evaluate the 
body forces.   

Force contribution from the divergence of the stress.  
   In the MMS, we assume that we have all the information in 
Eq. (3) except the body force. It is possible (e.g. by running a 
single-element model driver) to obtain all stress components 
as a function of uniaxial stain stretching in the 2-direction 
WITHOUT ROTATION. Suppose, for example, the 
constitutive model is the following simple NeoHookean 
model: 
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][*

IFFIσ  T
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JLog 
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where 
* is the Lame modulus,  is the shear modulus, J is 

the Jacobian, F is the deformation gradient and I is the 

identity tensor. We have chosen 
*  to be Lame modulus 

because  is already defined to be the amount of stretch in the 

2-direction. For uniaxial strain in the 2-direction, the rotation 

is IR  , and therefore the deformation gradient is UF  , 

and its Jacobian is : 
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    Computing the un-rotated stress for the simple NeoHookean 
model, because that model is an isotropic model, it has axial 
and lateral stress components as the only nonzero functions of 

uniaxial stretch . To apply this manufactured solution to an 

arbitrary, potentially anisotropic and even more nonlinear, 
elastic constitutive model, the upcoming analysis presumes 
only that the response functions for all components of stress 
under uniaxial strain in the 2-direction are known; i.e.,  
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Then Cauchy stress σ is computed using 

 
T

RσRσ      (10) 

where R is the rotation tensor. Now we need the divergence of 
the Cauchy stress. Substituting Eq. (10) in the indicial form of 
the stress divergence gives 
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Recalling from Eq. (9) that σ  depends only on the stretch , 

while Eq. (6) shows that the polar rotation R depends only on 

the rotation angle , using chain rule 
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Using the expression for R from Eq. (6), 
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Therefore Eq. (13) becomes 
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Recalling that  
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Therefore Eq. (15) becomes 
 

 jasa

s

pmip

j

im RU
dX

d
RA

x

R 1)( 


 
  (17) 

This implies that  
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The expressions for gradients of rotation expressed in Eq. (17) 
and Eq. (18) are substituted in Eq. (12) to give 
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Multiplying both sides of the Eq. (19) using iqR and 

simplifying using the fact that R is orthogonal, we have 

1
_

_
_

1

                             

)(




















sa

s

anqn

jn

j

qn
mnsn

s

qmiiqq

U
X

A

R
x

U
X

AfRf









 (20) 

Recall that the un-rotated stress depends only on the stretch , 

and   depends on X . Therefore, by chain rule,  
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Eq. (21) can still be reduced to  
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Using the definitions of , U and A and substituting Eq. 

(22) in Eq. (20), we have 
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Thus, un-rotated force is 
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The force contributions from the divergence of stress above 
apply even to anisotropic constitutive models. For the special 
case of an isotropic constitutive model, the un-rotated stress 
will be diagonal, giving 
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These are the un-rotated force components. To apply these in a 
calculation of the body force for the manufactured solution, 
the actual force vector can be computed by recalling 

that fRf  . Therefore, 

rrf ef   
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For the NeoHookean constitutive model used in this paper, the 

value of f comes out to be 
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In general, the force vector for an anisotropic elastic material 
will include an angular component so that, 
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Force contribution from the material acceleration.    
       Determining the contribution of force from the material 
acceleration is relatively easy because we already have the 

relation between x and X . Acceleration is simply 
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21 ]sin[]cos[ eee  r  and 

 

21 ]cos[]sin[ eee    

 
Density is given by the following equation: 

 0     (33) 

Substituting Eqs. (28), (31), (32), and (33) into Eq. (4) gives 
the components of the total body force required for this 
deformation: 
 

eeb bb rr      (34) 

where 


r

rr

f
ab   , 






f
ab  . 

CONCLUSIONS 
This paper described the concept of frame indifference 

starting with a classical single element test under uniaxial 
strain with superimposed rotation. Results for this minimal test 
revealed that a very common approach taken by finite element 
codes to satisfy frame indifference (namely working in an 
approximate un-rotated frame for which rotation during the 
increment is implicitly neglected by using only a single 
orthogonal tensor for all un-rotation operations during the 
step) fails this simplistic test. With this test it was confirmed 
that if a material undergoes rotation, then different polar 
rotations need to be used. Also a new manufactured solution 
was presented for a large deformation and large rotation of a 
bending beam. This problem tests any generally nonlinear and 
anisotropic elastic constitutive model simultaneously for basis 

indifference and frame indifference. It represents a rare case of 
manufactured solution that can be applied to arbitrary 
constitutive models, which was possible because the problem 
was designed to put all material points in the same character of 
deformation (uniaxial strain of various intensities with 
superimposed rotation). 
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