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a b s t r a c t

In general, thermodynamic admissibility requires isotropic materials develop reversible
deformation induced anisotropy (RDIA) in their elastic stiffnesses. Taking the elastic poten-
tial for an isotropic material to be a function of the strain invariants, isotropy of the elastic
stiffness is possible under distortional loading if and only if the bulk modulus is indepen-
dent of the strain deviator and the shear modulus is constant. Previous investigations of
RDIA have been limited to applications in geomechanics where material non-linearity
and large deformations are commonly observed. In the current paper, the degree of RDIA
in other materials is investigated. It is found that the resultant anisotropy in materials
whose strength does not vary appreciably with pressure, such as metals, is negligible,
but in materials whose strength does vary with pressure, the degree of RDIA can be signif-
icant. Algorithms for incorporating RDIA in a classical elastic–plastic model are provided.

Published by Elsevier Ltd.
1. Introduction

When subjected to large distortions, initially isotropic materials respond by developing anisotropy in their response to
deformation. Well-known examples of inelastic deformation-induced anisotropy (IDIA) include directional anisotropy in
cold worked metals (Hill, 1948), plastic flow induced anisotropy (Stouffer & Bodner, 1979), and nucleation and growth of
oriented micro-cracks in brittle media (Kachanov, 1982; Horii & Nemat-Nasser, 1983). Not to be confused with inherent
anisotropy, such as in fiber reinforced composite materials or single crystals, deformation-induced anisotropy is caused
by loading and is manifest in changes in the isotropy of the fourth-order tangent stiffness tensor of the material.

In addition to the above mentioned examples of nonrecoverable deformation-induced anisotropy, the first and second
laws of thermodynamics imply that the fourth-order tangent stiffness tensor of initially isotropic media develop generally
recoverable deformation-induced anisotropy (RDIA). This consequence of thermodynamics is known in the applied mechan-
ics community (cf. Marsden & Hughes, 1994; Willam, 2002), and the violation of thermodynamic principles resulting from
the adoption of a non-constant shear modulus in an isotropic elastic stiffness was described by Zytynski, Randolph, Nova,
and Wroth (1978) who showed that if the shear modulus of elastic materials is allowed to vary with pressure, as commonly
assumed in geomaterials, it is possible to construct elastic cycles closed in stress that are not closed in strain. If deformed in a
particular manner, a net energy increase is possible – a clear violation of the first law of thermodynamics for elastic adiabatic
loading. Zytynski asserted that his analysis lead to one of two alternatives: (1) adopt a constant shear modulus and allow
Poisson’s ratio to vary with deformation, allowing for Poisson’s ratio to become negative, or (2) abandon the notion of an
elastic region of material behavior. Zytynski failed to consider a third alternative: allowing the elastic stiffness to develop
reversible anisotropy in response to deformation.
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Houlsby (1985) describes the theoretical difficulties of modeling pressure-dependence of the shear modulus in clays in a
thermodynamically admissible manner. Attention is paid to the fact that coupling of isotropic and deviatoric responses
through the pressure-dependence of the shear modulus also requires dependence of the bulk modulus on the stress deviator.
In particular, Houlsby notes that pressure-dependence of the shear modulus cannot be simplistically achieved through pres-
sure-dependence of the bulk modulus and constancy of Poisson’s ratio. Instead, thermodynamics requires additional terms,
in the form of deformation-induced anisotropy. Isotropic–deviatoric coupling in isotropic materials in the context of RDIA
has also been described by Hueckel, Tutumluer, and Pellegrini (1992) and Scheidler (1996). More recently, in the theory
of hyperplasticity (Borja, Tamagnini, & Amorosi, 1997; Collins & Houlsby, 1997; Einav & Puzrin, 2004; Houlsby, Amorosi,
& Rojas, 2005), RDIA plays an implicit role through cross anisotropic terms in the elastic stiffness and compliance.

Outside of the geomechanics community, evidently RDIA has seen little, if any, consideration. In metals plasticity, for
example, material nonlinearity is observed (Burakovsky, Greeff, & Preston, 2003; Richmond & Spitzig, 1980) and based on
the observation that the ratio of flow strength to shear modulus is approximately constant, pressure dependence of the shear
modulus is inferred from experimental data (Guinan & Steinberg, 1975; Hua, Jing, Hua, & Hu, 2002). Pressure-dependence of
the shear modulus is also inferred from recordings of ultrasonic shear wave speeds taken at varying pressures. However,
material data are still interpreted in the context of elastic stiffness isotropy (Hayes, Hixson, & McQueen, 1999). Evidently,
RDIA has never been considered in the context of metals plasticity.

In this paper, the thermodynamic requirement that isotropic materials develop RDIA is emphasized and the degree of
RDIA in isotropic materials is quantified. The outline of this paper is as follows: an alternative proof of the thermodynamic
requirement of RDIA in the elastic stiffness of isotropic materials is given in Section 2. Algorithms for incorporating RDIA in a
classical elastic–plastic framework are given in Section 3, and the degree RDIA in isotropic media is quantified in Section 4.

1.1. Independent and dependent variables

Throughout this paper, strain is regarded as the independent variable. Thus, constraints are developed on the elastic stiff-
ness and moduli on volume change and distortion. By the chain rule, these constraints can be readily cast in terms of stress.
Inversion of the elastic stiffness gives similar constraints on the elastic compliance.

2. Elasticity in isotropic media

If a material is capable of elastic behavior, a necessary condition of thermodynamic admissibility is that the stress be
derivable from a strain energy potential (Malvern, 1969)
1 The
of cours
the Lag
�r ¼ @uð��;g; qkÞ
@��

� �
g;qk

; ð1Þ
where u is the internal energy per unit reference volume, �� is the strain measure1 work conjugate to the stress tensor �r;g is
the specific entropy, and qk are internal state variables which change only with dissipation. For an isotropic material, the stress
remains invariant under rotation, requiring that
�r ¼ wð��;gÞ ¼ wðQ � ��;gÞ ¼ Q �wð��;gÞ; ð2Þ
where w ¼ @u=@��, and ⁄ represents the Rayleigh product, defined for second-order tensors as
Q � A ¼ Q � A � Q T: ð3Þ
For a tensor of arbitrary order, the Rayleigh product is defined analogously as
ðQ � AÞij���kl ¼
X3

i¼1

Q iq � � �Q jnAn���qo���pQkp � � �Q lo: ð4Þ
By the representation theorom of isotropic functions (Smith, 1971), the valued tensor function w may be expressed as
wð��;gÞ ¼ w1dþw2�cþw3
�h; ð5Þ
where d is the second-order identity tensor, �c is the deviatoric part of ��; �h is the deviatoric part of �c � �c, and the xi are scalar
functions of the ‘‘mechanics’’ invariants of ��, defined for any second order tensor A as
JA
1 ¼ tr A; JA

2 ¼
1
2

tr A0 � A0; JA
3 ¼

1
3

tr A0 � A0 � A0; ð6Þ
where A0 is the deviatoric part of A.
definition of the strain tensor is intentionally left ambiguous so that the following results can be considered general in nature. In specific applications,
e, the strain tensor ��would take on a specific meaning and the corresponding stress tensor would necessarily by its work conjugate. For example, if �� is

range strain, then its work conjugate stress would be the 2nd Piola–Kirchhoff stress tensor.
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Alternatively, the xi can be chosen as functions of any other set of independent invariants of ��, in which case the tensor
basis can also change to any linearly independent triplet that span tensors commuting with ��. As can be readily verified
by back substitution, (5) implies that the internal strain energy of an isotropic material is a function of the mechanics
invariants of ��. Mathematically, u ¼ u J��

1; J��
2; J��

3; g
� �

and the fourth-order elastic stiffness tensor of an isotropic material is
found by
C ¼
@2u J��

1; J
��
2; J

��
3;g

� �
@

��@��

 !
g

: ð7Þ
Performing the indicated differentiation, the most general form of the elastic stiffness tensor of an isotropic material is
C ¼ @2u
@��@��

¼ 3u11E
iso þ u2

ffiffiffi
5
p

Esd þ u12ð�cdþ dþ �cÞ þ u22�c�cþ u13ð�hdþ d�hÞ þ u23ð�h�cþ �c�hÞ þ u33
�h�hþ u3Lð�hdþ d�hÞ; ð8Þ
where ui and uij denote ui ¼ @u=@J��
i and uij ¼ @2u=@J��

i @J��
j respectively, and not first-order and second-order tensors. The oper-

ator L is given in indicial form by
LðCijklÞ ¼
1
4

Cikjl þ Ckijl þ Ciklj þ Ckilj
� �

ð9Þ
and the orthonormal eigenprojectors Eiso and
ffiffiffi
5
p

Esd, are given in indicial form by
Eiso ¼ 1
3

dijdkl;ffiffiffi
5
p

Esd ¼ 1
2
ðdikdjl þ dildjkÞ �

1
3

dijdkl:

ð10Þ
When acting on a second-order tensor A; Eiso and
ffiffiffi
5
p

Esd return the isotropic part of A and the symmetric deviatoric part of A,
respectively. The factor of

ffiffiffi
5
p

is introduced so that both Eiso and Esd are unit tensors, thus making them an orthonormal basis
for the linear manifold of all minor-symmetric fourth-order tensors. This fact is later exploited to quantify the degree of
anisotropy. Using the right Cauchy–Green stretch tensor as a deformation measure, Marsden and Hughes (1994) gives a sim-
ilar representation of the elastic stiffness to that of (8)

2.1. Elastic stiffness isotropy

If the elastic stiffness is presumed isotropic, by the representation theorem (Smith, 1971) of fourth-order isotropic ten-
sors, it is expressible as
Ciso ¼ 3kEiso þ 2l
ffiffiffi
5
p

Esd; ð11Þ
where k and l are the tangent bulk and shear moduli, respectively, modulo a factor of J = det F (where F is the deformation
gradient) depending on the definition of ��.

2.2. Necessary conditions for elastic stiffness isotropy

It is natural to consider the conditions under which the elastic stiffness of an isotropic material is itself isotropic. Com-
paring tensor coefficients of (8) and (11), and since �cd; d�c; �c�c; �hd; d�h; �h�c; �c�h, and �h�h are not expressible as linear combi-
nations of the basis tensors Eiso and Esd, the following conditions must be satisfied for elastic stiffness isotropy
u11 ¼ k; ð12aÞ

u2 ¼ 2l; ð12bÞ

u12 ¼ u22 ¼ u13 ¼ u23 ¼ u33 ¼ u3 ¼ 0: ð12cÞ
Substituting (12b) into (12c) implies that
@l
@J��

1

¼ @l
@J��

2

¼ @l
@J��

3

¼ 0: ð13Þ
A necessary and sufficient condition for (13) to be satisfied is that l be independent of the deformation measure. (12a) and
(12c) also imply that k ¼ k J��

1

� �
. Thus, an isotropic elastic material in a distorted state will have an isotropic elastic stiffness if

and only if its shear modulus is constant and bulk modulus varies at most with J1��. Hueckel arrived at a similar conclusion
with respect to the secant bulk and shear moduli (Hueckel et al., 1992).

For elastic–plastic materials, similar analysis implies that l is independent of the deformation measure but can still de-
pend on g and qk. This may be a means of accounting for apparent dependence of l on pressure through elastic–plastic cou-
pling, though this is not considered further in this paper.
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2.3. First order approximation of C

In this and subsequent sections, the first-order approximation of C in (8)
Fig. 1.
an exis
C ¼ 3u11E
iso þ u2

ffiffiffi
5
p

Esd þ u12ð�cdþ dþ �cÞ ð14Þ

is adopted. Comparing tensor coefficients of (14) to (8), the derivatives of the strain energy can be given in terms of the famil-
iar bulk and shear modulus
u11 ¼ k J��
1

� �
ð15aÞ

u2 ¼ 2l J��
1

� �
ð15bÞ

u12 ¼ 2
dl J��

1

� �
dJ��

1

¼ 2l0: ð15cÞ
where the l0 indicates differentiation with respect to J��
1.

2.3.1. Elastic compliance
In numerical constitutive models, the fourth-order elastic compliance tensor S ¼ C�1 is needed to evaluate the elastic

strain increment when the stress increment is known. Successive application of the Sherman–Morrison formula (Golub
Elastic–plastic Kirchhoff stress-update algorithm. New terms involving recoverable deformation induced anistropy, not expected to be included in
ting stress-update algorithm, are set apart explicitly by hh�ii in Steps 1, 3, and 5.
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et al., 1996) for the inversion of a rank-one modification of a tensor allows the rank-two modification in (14) to be inverted to
give
Fig. 2.
and the
S ¼ 1
3k

Eiso þ
ffiffiffi
5
p

2l
Esd � 1

/
3kll0ð�cdþ d�cÞ � ðl0Þ2 9k�c�cþ 4lJ��

2dd
� �h i

; ð16Þ
where
/ ¼ 9kl kl� 4J��
2ðl0Þ

2
� �

: ð17Þ
3. Incorporation of recoverable deformation induced anisotropy in a classical elastic–plastic framework

For strain increment driven models, Fig. 1 implements RDIA in the elastic stiffness and compliance for isotropic elastic–
plastic materials in a classical elastic–plastic framwork as described by Brannon (2007).

As can be seen in Steps 1, 3, and 5 of Fig. 1, endowing the effects of RDIA on an existing elastic–plastic model is a matter of
adding very few easily evaluated terms. The only terms which are not readily available in most finite element host codes are
the elastic strains, which can be easily carried as internal state variables to the model for a moderate additional computa-
tional cost.

4. Quantification of anisotropy

As proved in the previous section, the elastic stiffness of isotropic elastic and elastic–plastic materials must develop RDIA
in its integrity basis in response to distortion. The degree of the resultant anisotropy is now quantified by a single scalar w for
several classes of engineering materials.

The notion of quantifying the degree of anisotropy of a tensor by a single scalar measure has previously been considered
in a number of contexts and disciplines (Backus, 1970; Nye, 1957; Pierpaoli & Basser, 1996; Rychlewski, 1984). Though the
formulations differ in their details, they share the common objective of attempting to quantify, in a meaningful way, the de-
gree to which the tensor is not isotropic. Commonly, w is defined by the ratio of the norm of the difference between a tensor
A and its isotropic part and the norm of A (Fedorov, 1968)
wðAÞ ¼ kA �A isok
kAk ; ð18Þ
where A iso, the isotropic part of A, is given by
A iso ¼ P �A ð19Þ
and P is the tensor projector which projects A on to the hyper-surface spanned by the isotropic basis for nth-order tensors
and � represents the appropriate order tensor contraction.

In this form, w has previously been used in a variety of applications, for example, in the investigation of crystal optics
where the degree of anisotropy has important implications on the behavior of light in anisotropic crystals (Fedorov,
1968), second-order tensors in mechanics (Rychlewski, 1984; Zhang, 1990), and finding the isotropic tensor closest to an
anisotropic symmetry (Moakher & Norris, 2006; Norris, 2006b).

Rather than adopt (18), (Brannon, 2009) makes the following observation: given a tensor A; A iso is the projection of A
onto the hyper-surface spanned by the unit basis tensors of the isotropic part of A. For fourth-order tensors, the basis tensors
are given by Eiso and

ffiffiffi
5
p

Esd, and a geometric description of the projection is shown in Fig. 2.
Geometric interpretation of decomposition of fourth-order tensor into isotropic and non-isotropic parts, showing the angle h between the tensor A

isotropic hyper-plane.



316 T. Fuller, R.M. Brannon / International Journal of Engineering Science 49 (2011) 311–321
The angle h between A and A iso, defined analogously to the angle between two vectors, is given by
Fig. 3.
Titaniu
Brügge
cos h ¼ A :: A iso

kAkkAk ¼
kA isok
kAk : ð20Þ
Rearranging and normalizing, the scalar measure of anisotropy is defined as
wA ¼ 2
p

cos�1 kA isok
kAk

 !
; ð21Þ
4.0.2. Properties of w

As given in (21), w has the following properties:
wðA isoÞ ¼ 0; wðA 0Þ ¼ 1;

wðAÞP 0;

wðaAÞ ¼ awðAÞ; a 2 R;

wðQ �AÞ ¼ wðAÞ:
Because w is based on the Euclidean norm, w is not invariant under inversion (Norris, 2006a), i.e.,
wðA�1Þ – wðAÞ: ð22Þ
However, several of the previous alternative measures suffer from the same problem. If invariance under inversion is re-
quired, w may be replaced with
wyðAÞ ¼ 1
2
ðwðAÞ þ wðA�1ÞÞ ð23Þ
which is invariant under inversion. Despite this drawback, (21) is adopted due to its intuitive geometric interpretation and
computational ease.

4.1. Degree of anisotropy in several inherently anisotropic materials

For perspective in the subsequent sections in which the degree of RDIA in isotropic elastic–plastic materials is quantified,
the degree of anisotropy w of the elastic stiffness of several inherently anisotropic materials is shown plotted against
kCisok=kCk in Fig. 3 for uniaxial strain compression. The coefficients for the elastic stiffnesses of each material shown in
Fig. 3 are taken from Böhlke and Brüggemann (2001) and the references therein.
Measure of anisotropy wðCÞ for Zircon 22,251 h (tetragonal symmetry), Quartz 62,894 N (trigonal symmetry), Uranium � (orthorhombic symmetry),
m 52,743 � (hexagonal symmetry), Hornblende 42,420 O (monoclinic symmetry), and Copper � (cubic symmetry). Material data from Böhlke and
mann (2001).
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4.2. Degree of recoverable deformation induced anisotropy in isotropic media

In contrast to the materials in Fig. 3, whose degree of anisotropy is inherent and constant, the degree of anisotropy in
isotropic elastic materials varies with deformation. As will be shown, the degree of RDIA in classical elastic–plastic materials
generally depends on two competing constitutive factors: pressure dependence of the shear modulus and pressure-depen-
dence of the yield function. These two features will be explored in this section.

4.2.1. Constitutive model
The yield function in Fig. 1 is given by the pressure-dependent form
Fig. 4.
Quartz
symme
f ð�rÞ ¼
ffiffiffiffi
J�r

2

q
� a1 þ a3ea2 J�r

1 þ a4J�r
1 þ a5 cp

eq

� �m
; ð24Þ
where a1–a5 and m are material parameters, and cp
eq is the equivalent plastic strain. As defined, f is capable of reducing to

several common plasticity models, e.g., choosing a2–a4 equal to zero, J2 plasticity with isotropic strain hardening is recov-
ered, choosing a2, a3, and a5 equal to zero, linear Drucker–Prager plasticity is recovered. or, if a5 is set equal to zero, the yield
function employed by the Sandia Geomodel (Brannon, Fossum, & Strack, 2009; Fossum & Brannon, 2004, 2006) is recovered.

The bulk modulus and shear modulus are taken as
k ¼ k0 � k0
dk
dp

				
0
J��

1: ð25Þ

l ¼ l0 � k0
dl
dp

				
0
J��

1: ð26Þ
In Eqs. (25) and (26), since elastic moduli are typically measured as functions of pressure, use has been made of the chain
rule to cast first order bulk and shear moduli coefficients in terms of pressure derivatives.

Applying (19) to the reduced elastic stiffness of (14), the isotropic part of C is given by Ciso in (11), and wC is reducible to
wðCÞ ¼ 2
p

cos�1 9k2 þ 5ð2lÞ2

9k2 þ 5ð2lÞ2 þ 12ð2l0Þ2J��
2

 !
ð27Þ
4.2.2. Degree of recoverable deformation induced anisotropy in elastic materials
The degree of anisotropy for an elastic material subjected to uniaxial strain compression is shown in Fig. 4. Parameters for

the constitutive model are k0 = 237 GPa, l0 = 246 GPa, dl/dpj0 = 9, dk/dpj0 = 2. Yield was suppressed by taking a4 to be an
arbitrarily large number.

The data in Fig. 4 demonstrate that, for elastic loading, the magnitude of anisotropy induced by deformation in isotropic
materials is capable of attaining and even exceeding the magnitude of anisotropy in intrinsically anisotropic materials at fi-
nite strains.

4.2.3. Degree of recoverable deformation induced anisotropy in elastic–plastic materials
Of course, in elastic–plastic materials, due to the limit on the magnitude of realizable elastic deviatoric strain imposed by

the yield criterion, the magnitude of RDIA will also be limited. As an illustration, the degree of RDIA for the same material as
Variation of the measure of anisotropy wðCÞ for elastic uniaxial strain deformation ⁄. Also shown are wðCÞ for Zircon 22,251 h (tetragonal symmetry),
62,894 N (trigonal symmetry), Uranium � (orthorhombic symmetry), Titanium 52,743 � (hexagonal symmetry), Hornblende 42,420 O (monoclinic
try), and Copper � (cubic symmetry).



Fig. 5. Variation of the measure of anisotropy for uniaxial strain deformation for the same material as in Fig. 4 but allowing for plastic yielding ⁄. Also
shown are wðCÞ for Zircon 22,251 h (tetragonal symmetry), Quartz 62,894 N (trigonal symmetry), Uranium � (orthorhombic symmetry), Titanium 52,743 �
(hexagonal symmetry), Hornblende 42,420 O (monoclinic symmetry), and Copper � (cubic symmetry).
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Section 4.2.2 and subjected to the same uniaxial strain compression, is shown in Fig. 5 allowing for yield by taking
a1 = 1800 MPa and a4 = 0.095.

As illustrated in Fig. 5, allowing for yield limits the degree of RDIA in this material quite severely. Only at very large strains
does the degree of anisotropy even exceed 5%.

4.2.4. Factors affecting the degree of recoverable deformation induced anisotropy in isotropic materials
Considering the term involving RDIA in the elastic stiffness in (14),
Fig. 6.
dp = 20
CRDIA ¼ 2l0ð�cedþ d�ceÞ; ð28Þ
two key factors in how large the magnitude of RDIA becomes during loading are: pressure-dependence of the shear modulus,
and, implicitly, the pressure dependence of yield which allows the realizable elastic deviatoric strain to increase with pres-
sure. It turns out that under some circumstances these two are competing factors. In the following paragraphs, each factor
will be considered separately using the same model parameters as used in Fig. 5.

Pressure-dependence of the shear modulus. In Fig. 6, the magnitude of RDIA is shown plotted versus axial strain for uniaxial
strain deformation for varying dl/dp. All other model parameters are the same as for the material in Fig. 5.

Referring to Fig. 6, increasing dependence of the shear modulus on pressure through increasing values of dl/dp does not
necessarily lead to an increase in the magnitude of RDIA at all strains. This behavior is explained by observing that stronger
dependence of the shear modulus on pressure results in an increase in deviatoric strain at a given pressure. Thus, unless the
pressure-dependence of strength is also large, the elastic-deviatoric strain will decrease with increasing pressure due to the
yield criterion, causing a decrease in the magnitude of CRDIA. Depending relative competing effects of pressure-dependence of
Variation of the measure of anisotropy wðCÞ with l0 for uniaxial strain deformation plotted against axial strain for dl/dp = 50- �- �- �- �-, dl/
. . .. . ., dl/dp = 10------, dl/dp = 2—-—--, and dl/dp = 0.03. For large values of l0;wðCÞ decreases due to the limiting value of shear strain.



Fig. 7. Variation of the measure of anisotropy wðCÞ with a4 for uniaxial strain deformation plotted against axial strain for a4 = 0.399- �- �- �- �-, a4 = 0.2. . .. . .,
a4 = 0.1-------, a4 = 0.05—--—–-, and a4 = 0.03. Except for the largest values of a4;wðCÞ never exceeds 5%.

Fig. 8. Degree of recoverable anisotropy in elastic–plastic materials in triaxial strain compression for linearly pressure-dependent elastic moduli for TiB23,
limestone------, and 2024 aluminum- �- �- �- �-. With the exception of alumina, the degree of recoverable anisotropy never exceeds 5% even in the finite
strain regime.
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strength and shear modulus, even materials with moderate pressure-dependence of shear modulus can exhibit large degrees
of RDIA at large strains.

Pressure-dependence of the yield. In Fig. 7, the magnitude of RDIA is shown plotted versus axial strain for uniaxial strain
deformation for increasing levels of pressure dependence of strength achieved by varying a4. All other model parameters
are the same as for the material in Fig. 5. Based on the observation of Lee, Brannon, and Bronowski (2004) that the slope
of the yield function in stress space never exceeded the slope of the stress trajectory for uniaxial strain loading, the upper
limit of a4 = 0.399 was chosen as this limiting value.

Not surprisingly, since the size of the elastic domain increases monotonically with a4, the degree of RDIA also increases at
all strains monotonically with a4.

4.3. Magnitude of recoverable deformation induced anisotropy in a selection of engineering materials

It has been shown that, for pressure-sensitive materials, the RDIA of the elastic stiffness can be comparable in magnitude
to the degree of anisotropy in inherently anisotropic materials in the finite strain regime for elastic loading, though its mag-
nitude was severely restricted when allowing for yield. The degree of RDIA is shown in Fig. 8 for limestone, 2024 aluminum,
TiB2, and 99.5% alumina whose properties are outlined in Table 1 for uniaxial and triaxial �� ¼ ��; ��=10; ��=10;0;0;0ð ÞT strain
compression.

Though the magnitude of RDIA is characterized for the specific materials outlined, they were chosen to be representative
of the larger classes of geologic, ceramic, metallic, and powdered metal materials, respectively.



Table 1
Material properties representative of ceramic, geologic, and metallic materials used in simulations shown in Fig. 8.

Property Material

TiB2
a Limestoneb 2024 Alc 99.5% aluminad

k0 (GPa) 237.0 24.0 76.0 1.549
l0 (GPa) 246.0 15.1 28.6 2.722
@l/@pj0 9.0 2 1.8 208.5
@k/@pj0 2.0 0 4.75 171.6
a1 (MPa) 1800 71.9 256.0 4.2
a2 (1/MPa) 0.0 3180.0 0.0 0.0
a3 (MPa) 0.0 70.1 0.0 0.0
a4 0.095 0.171 0.0017 0.1813
a5 (MPa) 0.0 0.0 426 0.0
m NA NA 0.34 NA

a Data from Grady (1991).
b Data from Brannon et al. (2009).
c Data from Johnson and Cook (1985), Steinberg (1996).
d Data from Zeuch et al. (2001).
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5. Discussion and summary

In initially isotropic materials whose shear modulus and strength vary with pressure, the degree of RDIA increases with
axial strain in uniaxial and triaxial strain deformation. The degree of RDIA is not sensitive to the loading paths investigated,
being nearly the same in uniaxial and triaxial compression. For the metallic, geologic, ceramic, and powdered metal mate-
rials investigated, the following general observations can be made:

� For metallic materials, even with the inclusion of slight pressure-dependence of yield as reported by Richmond and Spit-
zig (1980), the degree of RDIA is, even at finite strains, negligible. This observation makes sense in light of the observation
that the ratio of strength and shear modulus is constant (Hua et al., 2002) in metals, which limits the elastic-deviatoric
strain from achieving magnitudes which allow for the development of RDIA in the material.
� For geologic materials, in which the strength and shear modulus are both moderately dependent on pressure, the mag-

nitude of RDIA is significant only in large deformation, finite strain, regimes. If a geologic material is incapable of with-
standing such large deformations without catastrophic failure, or is only exercised in small strain regimes, the effects of
RDIA are negligible.
� For ceramic materials, in which the strength and shear modulus can both be strongly dependent on pressure, the mag-

nitude of RDIA can potentially become significant at moderate strains. However, like the geologic materials, the ceramic
material would have to be capable of withstanding even these moderate levels of strain for RDIA to be significant without
failing.
� For the powdered metals in which the strength and shear modulus are extremely pressure-dependent, the degree of RDIA

is significant even at small strains.

5.1. Summary

The distinction between isotropic functions and isotropic tensors was emphasized. An isotropic material is one in which
its internal energy is an isotropic function of the invariants of the strain tensor. Twice differentiating this isotropic energy
function results in thermodynamically required deformation-induced anisotropy in the fourth-order elastic stiffness. The
stiffness will be anisotropic except in the case that the bulk modulus varies at most with J��

1 and the shear modulus is con-
stant. Considering laboratory evidence that l is not constant, even in common engineering materials (Duffy, Shen, Shu, Hem-
ley, & Singh, 1999; Guinan & Steinberg, 1975; Hayes et al., 1999), the assumption of isotropy of the elastic stiffness should be
abandoned to allow revised analysis of material characterization data in a thermodynamically consistent manner. In other
words, if using an isotropic stiffness leads to a pressure-dependent shear modulus, then the data must be re-analyzed allow-
ing for RDIA, or irreversible changes in pressure in pressure associated with dissipation rather than elastic volume change.

RDIA is only one source of deformation induced anisotropy. For ceramics and rocks, which fail through growth of oriented
cracks, inelastic deformation-induced anisotropy is expected to be severe. Nevertheless, the inclusion of RDIA in a compu-
tational framework is only a matter of adding a few extra lines of easily evaluated code to existing models, as shown in Fig. 1,
and should, therefore, be included if thermodynamic admissibility is a desired attribute of the computational model.
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