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Continuum mechanics codes modeling failure of materials historically have considered those materials to
be homogeneous, with all elements of a material in the computation having the same failure properties.
This is, of course, unrealistic but expedient. But as computer hardware and software has evolved, the
time has come to investigate a higher level of complexity in the modeling of failure. The Johnson—Cook
fracture model is widely used in such codes, so it was chosen as the basis for the current work. The CTH
finite difference code is widely used to model ballistic impact and penetration, so it also was chosen for
the current work.

The model proposed here does not consider individual flaws in a material, but rather varies a mate-
rial’s Johnson—Cook parameters from element to element to achieve inhomogeneity. A Weibull distri-
bution of these parameters is imposed, in such a way as to include a size effect factor in the distribution
function. The well-known size effect on the failure of materials must be physically represented in any
statistical failure model not only for the representations of bodies in the simulation (e.g., an armor plate),
but also for the computational elements, to mitigate element resolution sensitivity of the computations.

The statistical failure model was tested in simulations of a Behind Armor Debris (BAD) experiment, and
found to do a much better job at predicting the size distribution of fragments than the conventional
(homogeneous) failure model. The approach used here to include a size effect in the model proved to be

insufficient, and including correlated statistics and/or flaw interactions may improve the model.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Continuum mechanics codes using Lagrangian frames and those
using Eulerian frames have achieved great success in modeling
ballistic impact and penetration. One widely-used model for deter-
mining material failure in such simulations is the Johnson—Cook
fracture model [1], which computes a path-dependent failure using
the following relation for current failure strain:

e — [131 + D2eP7][1 + Dylné"|[1 + DsT']. (1)

In Eq. (1), Dy, Dy, D3, D4 and Ds are material constants. ¢ is the
ratio of mean stress to the von Mises equivalent stress, ¢ is the non-
dimensional strain-rate, and T" is the homologous temperature.

Historically, these continuum mechanics codes applied the
Johnson—Cook fracture model in a deterministic fashion throughout
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the problem domain; i.e., for a particular material, the same set of
material constants applies to every element or cell' containing that
material. However, because of heterogeneity, real materials are not
perfectly deterministic, but instead exhibit variations of properties,
for example fracture properties, throughout the volume of material.
A recent approach [2,3] applied statistical variations of fracture
properties to materials in a Lagrangian frame. Here, the approach is
applied to the Johnson—Cook fracture model in an Eulerian code,
CTH [4], and extended to account for size effects, a step toward the
ultimate goal of an element-size-invariant failure criterion for
consistent predictions across a spectrum of system geometries. The
goal of the present work is to illustrate the dramatic improvement in
the character of results (especially irregular failure patterns) ach-
ieved when heterogeneous failure properties and scale effects are
incorporated into a simulation. This should lead to the realization

! The term element is usually applied in the context of a Lagrangian formulation,
while the term cell usually applies to the Eulerian computational unit. In the
following discussions, the term element will be used for both applications, for
simplicity.
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that better experimental characterization of the failure distribution
is needed, and provide motivation to obtain that data.

2. Statistical variation of the initial failure strain

Identification of constraints is important if one seeks to
statistically perturb material parameters. If, for example, a Weibull
perturbation is applied to a material parameter, then realizations
of that parameter will vary from zero to infinity, and such varia-
tion must not violate any fundamental constraints on material
parameters.

Consider a specimen at room temperature in a state of zero
pressure (mean stress), being strained at a rate of 1/s. The strain at
failure of such a specimen will be termed initial failure strain,eg.
Under these conditions, Eq. (1) reduces to the following expression
for the initial failure strain:

86 = D] +D2. (2)

Admissible Johnson—Cook material parameters must obey the
constraint D1 + D2 > 0 to ensure that a positive failure strain is
required to induce failure. Satisfaction of this constraint has been
confirmed for numerous materials for which Johnson—Cook data
sets are available [5]. However, some of those materials have
negative values for D1. Therefore, D1 and D, may not be individu-
ally perturbed according to a Weibull distribution since there will
exist realizations violating the constraint D; + D, > 0. However,
their sum, the initial failure strain e’;), can be perturbed via a Weibull
distribution (or any other distribution for which negative realiza-
tions are impossible?).

Weibull [6] considered the statistics of failure events (i.e., failure
of systems), for example the fatigue life of a rotating steel beam.>
Here, the applicability of Weibull statistics at an element level
within a shock physics code is explored under the following
progression of assumptions:

The failure strain ¢ in an elemental volume of the system is
strongly dependent on the criticality? of the flaws in that element.

The criticality of an isolated flaw is not necessarily Weibull-
distributed, but a Weibull distribution is reasonable for an
ensemble of flaws of random orientations if the population
contains many small flaws and relatively few large flaws [7].

The failure strains of the ensemble of elements making up the
system are also Weibull-distributed [7].

Since & = f(eé), the initial failure strain in each of the many
volume elements making up the system is also Weibull-distributed.
This assumption differs from the approach in [3], as discussed later.

Therefore the initial failure strain will be Weibull-distributed
throughout the elements of a material.”

Eq. (1) does not explicitly contain the initial failure strain; to use
a statistically varying initial failure strain, Eq. (1) is rearranged
algebraically to the following form:

2 For this reason, a Gumbel distribution would be inappropriate since its reali-
zations have no lower bound.

3 Subsequently, system will refer to a component of a simulation, e.g., an armor
plate or a penetrator.

4 Criticality is the propensity (or probability) of a flaw to initiate failure of the
system under a given state of stress, for example the size of the flaw might affect its
criticality.

5 To be sure, these assumptions are tenuous, as little or no data exists on which to
base an understanding of the correct distribution of flaws in a material. And the
distribution may well be different for different materials, e.g., ceramic versus metal.
Nontheless, applying a Weibull distribution to the initial failure strain is a reason-
able starting point, from which the efficacy of such a statistical modeling approach
may be judged. A desirable outcome of the present work is to motivate experi-
menters to obtain such data.

¢ — [eg —D, (1 - eDﬂ*)] 1+ Dglné"|[1 + DsT"]. (3)

As mentioned, the failure strain in the standard Johnson—Cook
model is deterministic. However, variations in micromorphology
of a material lead to variations in failure strain. Probabilities
associated with such variations lead to a dependence of failure
strain on the specimen size. Larger samples are more likely to
contain a critically oriented or critically large flaw, making larger
samples statistically more prone to failure at a given strain. Below,
a mathematical framework [7] is developed to account for these
macroscale effects of variability in flaw morphology without
requiring actual details about crack sizes, shapes, orientations, or
clustering.

Consider a sample of volume V containing exactly one flaw. Let
the sample be subjected to a prescribed strain, e. Whether or not
the sample will fail is uncertain because of uncertainties in flaw
morphology such as crack orientation, size, or shape. If, for
example, the strain state is tensile in one direction and compressive
in another, the sample is certainly safe from failure if the crack
normal is aligned with the compressive direction, but flaw orien-
tations are unknown. Even when all principal strains are
compressive, a flaw can fail under shear if it is critically oriented
and sufficiently large. However, flaw size is unknown.

Regardless of the basis of uncertainty, let g(¢) symbolically denote
the probability that the sample is safe from failure at the applied
strain ¢ (this single-flaw probability is not expected to be Weibull-
distributed). Under a non-interaction assumption, a sample con-
taining N flaws is safe from failure only if every flaw in the sample is
safe from failure, giving the probability that the sample is safe to be
Ps = [g(e)]N. This is expected to be an upper-bound since flaw
interactions are expected to reduce the likelihood that the sample is
safe. For elastic properties, a non-interaction assumption is valid to
very high crack densities [8], but such cannot be assumed for failure
properties.

Let n = N/V denote the flaw density and let Py denote the
probability of failure. Thus, for the non-interaction model,

Pr=1-P=1—[g(e)N=1-[g(e)". (4)

To allow for the effect of flaw interactions in an approximate
way, suppose that an increase in flaw density causes Py to increase
in a way similar to intensifying the strain in a non-interaction
model. Then the non-interaction model can be generalized to
account for flaw interactions by multiplying the strain by an
intensifier function H(n) to give

Py = 1—{gle-Hm}"™. (5)

The strain intensifier function H(n) is expected to be a mono-
tonically increasing function of crack density so that an increase in
crack density would lead to an increase in apparent strain in a non-
interaction model and, therefore, an increase in Py

Unfortunately, both the g and H functions, as well as the flaw
density n, are unknowable from a practical perspective. As previ-
ously argued, a Weibull distribution is to be assumed for the
multiple-flaw elements. The Weibull distribution function [6] is

P =1 —exp[-¢(e)], (6)

where ¢(¢) is a material function to be measured in the laboratory
by repeated testing of the strain at failure. Applying the definition
of a Weibull distribution, the material function in Eq. (6) would be
of the form

&

o) = ()" )

a
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The constant (positive) divisor a is called the scale parameter,
and the (positive) exponent m is termed the shape factor. The
genesis of these terms will become apparent in the next section. In
the engineering literature, and in the remainder of discussions
here, the shape factor is called the Weibull modulus.

The dependence of failure probability Pron the number of flaws
in a brittle material, and hence on sample size V, is clear. However,
this is a tenuous basis for defining the failure probability of a ductile
metal. Nontheless, it is a reasonable starting point for testing the
effectiveness of including heterogeneity in a material in an Eulerian
simulation. From Egs. (5) and (6), the failure probability is taken to
be of the form:

Pr =1 {exp[-¢(e))}". (8)

The scale parameter a can be eliminated as an explicit parameter
by noting that the median failure strain ¢ for a sample of size V
corresponds to Pr=¥4. Setting ¢ = & V = V, and Pr= ¥ in Egs. (7)
and (8) gives the following relationship between the scale param-
eter and the median failure strain:

—-1/m
a- 5{“‘—_2} . 9)
nVvV
After rewriting Eq. (8) in terms of the probability of survival, Ps,
where Ps=1—Py, Egs. (7) and (9) are substituted, and the survival
probability becomes

Py = 2=/ (e/z)m. (10)

A random realization of failure strain may be found by replacing
Ps in Eq. (10) by a random number R uniform on the interval (0 < R
< 1), and solving for ¢ to obtain

A

This equation may be applied to perturb the value of any
parameter in a material model that is confirmed in the laboratory to
vary according to a Weibull distribution. For scoping purposes
while awaiting further data on the distributions of failure strain, ¢ is
interpreted to be the initial failure strain parameter e{) in Eq. (3).
Accordingly, the Johnson—Cook fracture model is employed using
a statistically varying value of the initial failure strain parameter
generated by

sl

Recalling Eq. (2), the median value of the distribution of initial
failure strains (E{)) is assumed equal to the library value (D1 + Dy),
from [5] for example.® Therefore, the volume V is taken as the
volume of the homogeneously loaded gage section’ of the test

6 Lacking experimental data on the actual distribution of initial failure strains in
a material, an assumption is made that the median initial failure strain is equal to
the library value of (D; + D). That implies an assumption that many tests were
conducted to evaluate the parameters D; and D,, and that the median values of
those tests were reported and entered into the CTH library.

7 The present analysis presumes nominally homogeneous loading because
elements in a discretized simulation are individually treated as homogeneously
loaded. However, identifying an appropriate reference volume is difficult because
laboratory experiments rarely involve homogeneous loading. Hence, the gage volume
is only an approximation that can be improved by simulating the actual experiment.
Our conjecture is that volume-based size effects at the element level could easily lead
to different size effects at the larger scale of the experiment. Moreover, recent work
(not reported here) suggests that the element-level size effect may require revision to
approximate flaw interactions (later, size effect will be discussed in more detail).

sample used to determine the constants D; and D,. Each element in
a calculation is assigned a distinct failure strain according to Eq.
(12). Therefore, the volume V is the element volume.

Incidentally, the perturbation of the zero-pressure shear failure
strain e{) leads to a degree of uncertainty in shear failure strain that
is the same at all pressures. The perturbation essentially introduces
uncertainty in ordinates of the shear failure envelope, as illustrated
in Fig. 1a. Since Weibull realizations range from zero to infinity,
unrealistically large shear failure strain realizations are theoreti-
cally possible with the present approach. In parallel with the
current efforts, Brannon et al. [3] applied Eq. (11) in a fundamen-
tally different way. They applied a Weibull distribution to the zero-
shear hydrostatic tensile strength, rather than applying the Weibull
perturbation to the zero-pressure shear strength as is done here.
Their approach leads to a lessening of uncertainty with pressure
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Fig. 1. Realizations of strength curves obtained by perturbing (a) the ordinate and (b)
the abscissa of the reference curve (thick line). The current study explores ordinate
perturbations of type “a”. A concurrent study (3) has focused on abscissa perturbations
of type “b”, which corresponds to uncertainty decreasing with pressure and which
prevents unrealistically large realizations of shear strength.
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(Fig. 1b) and prevents infinite shear strengths. Exploring the rela-
tive merits of these different approaches requires further experi-
mental data for the strength distributions at a variety of stress
triaxialities.

Derum et al. [9] employed another approach, limiting plastic
work (which would become a limiter on plastic strain here). Such
a limiter could mitigate the scale issues discussed later. Although
the work of Dgrum et al involved quasi-static loading, their
approach (of limiting plastic work) could be a very practical way to
introduce rate-dependent ductility. Since stress increases in high-
rate loading, a work-based failure theory to would yield a lower
plastic strain to failure at high rates.

As will be soon demonstrated, perturbing failure properties
leads to more realistic localized failure. Moreover, this approach
can help mitigate the mesh sensitivity that is well known to corrupt
the solutions of classical deterministic damage models. Elements
on a refined mesh are smaller and therefore stronger, on average,
than elements on a coarse mesh. However, since there are more
elements on a refined mesh, the probability of the onset of failure
somewhere in a finite domain is the same as for a coarse mesh
covering the same domain.

3. Sample distributions

Egs. (6) and (7) constitute the Weibull cumulative distribution
function (CDF), the probability of failure of the element at, or prior
to, a strain of ¢:

F(e) = l—exp[—%}m. (13)

The derivative of the CDF gives the Weibull probability density
function (PDF),

m—1 m
o =" e ] 14

The integral of the PDF gives the probability that the failure
strain of the element lies between the limits of integration. The
hazard function® gives the instantaneous failure rate (failures per
unit strain increment) at a strain of ¢. The hazard function is related
to the CDF and PDF through the following expression:

f(e)
h(e) = 1T_F(e) (15)

Hence the Weibull hazard function is

me\m—1
o = 7)™ 0

One can easily see from Eq. (16) that for a Weibull modulus
m > 1, the hazard function increases with increasing strain (¢). That
is to say, as the strain increases, an increasing number of elements
will fail during each strain increment. For m = 1, the Weibull
function reduces to the exponential distribution and the hazard
function is constant, meaning failures occur at a constant rate no
matter how high the strain (this is the “memoryless” property of an
exponential distribution). For a Weibull modulus m < 1, the hazard
function decreases with increasing strain. In this case, elements get

8 A popular conceptualization of the hazard function is the “bathtub curve”
(shaped like the profile of a bathtub), initially decreasing, then relatively constant
for a time, then increasing. Applied to human life, this is easy to grasp (in life, the
“stress” is time, or age, not strain): initially the hazard function (or failure rate, say,
deaths/1000 births) is high but decreasing with time (or age); this corresponds to
infant mortality. Throughout most of life the failure rate is nearly constant, but in
old age the failure rate begins to increase.

more resistant to failure as strain increases. Failure rate normally
increases with increasing strain so, for most applications involving
failure strain, m > 1 seems appropriate.

Fig. 2 shows sample distributions of initial failure strain as they
would be produced in a CTH problem generation, for various values
of the Weibull modulus. Examples of distributions for m < 1 and
m = 1 are included for completeness. The failure strains shown are
actually multiples of the median failure strain 55 (which is equiv-
alent to taking E{J = 1.00). In each case 100,000 initial failure strains
were generated, and 200 “bins” (bars in the plots) were used across
the range of strains plotted. The ordinate of each bar indicates the
number of initial failure strains of the abscissa value that were
generated (within a “A¢” range equal to the thickness of a bar).? As
mentioned, the realizations were generated using a median value
of exactly 1. The medians calculated from the generated data
ranged from 0.9876 to 1.0030 with an average error of 0.4%,
acceptable accuracy for 100,000 samples.

Several observations can be made regarding the distributions in
Fig. 2:

1. m<1: The distribution has exponential characteristics
(precisely exponential for m = 1).
2.1 <m < ~3: The distribution tails off to the right (positive

skewness).

3. m= ~3: The distribution is nearly symmetrical (negligible
skewness).

4. m > ~3: The distribution tails off to the left (negative
skewness).

5. all m: No initial failure strains less than zero are obtained.!°

Finally, observe that the distribution of initial failure strains
becomes increasingly narrow as m increases. Extremely large
values of m result in a fairly constant value of initial failure strain,
approximately equal to E{), the library value; i.e., approximately the
same model as the standard (non-statistical) Johnson—Cook Frac-
ture model. However, the decrease in the standard deviation with
m is very slow. For the purposes of numerical simulation, a deter-
ministic damage model would be appropriate only if the standard
deviation in failure strain is below machine precision, and it can be
shown!! that this would require a Weibull modulus on the order of
10'6. Even the most uniform materials have a Weibull modulus
orders of magnitude smaller than this. Hence, variation in failure
strain should be included in any simulation to obtain realistic
localization of failure.

In a graphical way, Fig. 3 shows the final observation. Here, the
distributions are plotted as lines on a single abscissa scale and
a single ordinate scale to facilitate comparison. Although the total
number of samples remains 100,000 for each case, bin sizes used to
plot Fig. 3 were different from the bin sizes used to plot Fig. 2 (100
bins over the range of strains plotted in Fig. 3, compared to the 200
bins for Fig. 2 plots), resulting in differences in the ordinate values
in the two figures. The distributions get narrower as m increases,

° Similar to the integral of the PDF, the area under the envelope of the bars
represents probability of occurrence. For example, the area of the bar representing
a particular initial failure strain divided by the area of all bars equals the probability
of occurrence of that particular initial failure strain.

10 The m = 0.50 case appears to show a number of strains less than zero because
the plotting algorithm plotted zeros in a bar placed to the left of zero. These plotted
points were actually small positive values in the data rounded to four decimal
places for plotting (i.e., 0.0000) and therefore were plotted as zeros; no negative
values were contained in the data.

1 For the Weibull distribution, the ratio of standard deviation to median is
approximately (7/v/6m ) for large m. Hence, a distribution with a standard devia-
tion smaller than round-off error (roughly 10~'6) requires an unrealistically large
Weibull modulus.
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Fig. 2. Distributions of initial failure strains for various values of the Weibull modulus, m (scales vary).
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Fig. 3. Comparison of distributions of initial failure strains for various values of the
Weibull modulus, m.

but the area under the curves is constant because the bin size and
number of samples is constant.

Finally, the spatial randomness of the values can be inferred
from Fig. 4, where the initial failure strains generated using m =2
are plotted in the order in which they were generated, as indicated
by the sequence number. Fig. 4a is a plot of all 100,000 values
generated; Fig. 4b is an enlargement of the first 100 values gener-
ated. The sequence is apparently random. These values are inserted
sequentially into the CTH computational elements by spatially
regular [,J,K loops through the problem domain, so there is no
resulting spatial regularity by which a body receives initial failure
strains. However, as previously described (Fig. 2), a histogram of the
data in Fig. 4 shows that there is a Weibull distribution of the
frequency of occurrence of the various values of initial failure strain.

4. The size effect

Weibull mentioned “...the size effect on failures in solids...” in
his statistical failure work [6]. This “size effect” has a venerable
history. Griffith [10,11], in his classic crack theory work, conducted
a series of experiments on glass fibers of varying diameters. He
found that as fiber diameter decreased, fiber-breaking stress
increased. In a homogeneous material, breaking stress does not
depend on fiber diameter. Preceding even Griffith, da Vinci (as
reviewed in [12]) found that short iron wires were stronger than
long iron wires. In a homogeneous material, breaking strength does
not depend on wire length. In both cases the larger samples have
a higher probability of containing a critical flaw which will cause
the specimen to fail.

This size effect must be applied to the current work, because the
results of a simulation should be independent of the resolution
(element size) used. Consider a finite, homogeneous specimen
subjected to a uniform strain field; the probability that the spec-
imen is safe from failure at a particular strain is Ps. If the specimen is
divided (conceptually or computationally) into g elements, then
(assuming independence) each element should have a safe-from-
failure probability of W, such that {¥s}4 = Ps. If the specimen is
divided into r elements, where r > g, then each element should
have a safe-from-failure probability of ®;, such that {®s}" = Ps.

as
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Fig. 4. Spatially random nature of the generated initial failure strains.

Hence {W¥}9 = {®s}, and since ¥ and ®; are less than one and r > g,
&, must be greater than W. In other words, smaller elements are
more likely to survive a particular strain than large elements (but
since there are more of them, the probability of specimen failure is
the same). In the current context, the initial failure strain of a small
element should be larger than that of a large element.

Eq. (12) describes the distribution of initial failure strains (e{)) for
a system of elements of an arbitrary size. The median value Ef)
applies to some fundamental distribution of failure strains, a distri-
bution for elements of a particular size, V= V. If V=V, the median
value of the size-corrected distribution obtained by the statistical
model (Eq. (12)) will be different from the median of the funda-
mental distribution (i.e., the library value E{)). The median of the
size-corrected distribution is found by setting R = %% in Eq. (12) to
obtain

% =(p) (17)
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where E{, is used to differentiate the median of the size-corrected
distribution from the median of the fundamental distribution, E{J.
This formula for size effect has appeared in numerous publications
on scale dependence [13]. The size-corrected distribution is the one
that actually appears in a simulation, and the median of that
distribution is offset from the median of the fundamental distri-
bution by factor (V/V)~ /™ which hereafter will be termed the
“size effect factor”. For simplicity, let

1%
a == 18
v (18)
so that
size effect factor = o~ 1/™ (19)

An increase in element volume results in a decrease of the
median of the distribution of initial failure strains for any reference
volume. Thus the size effect factor ensures that large elements are
weaker on average than small elements (i.e., have smaller initial
failure strains). However, the population of small elements is larger
so that there is a greater chance that one of them will fail. The net
result is that the probability of failure within a finite domain is
unaffected by the mesh resolution used to cover that domain.

Some combinations of Weibull modulus with extremely small
elements can cause a computational difficulty wherein the material
is made artificially strong because the volume of the elements in
a computation are small compared to V. Johnson [14] reports the
geometry of the specimens used in calibrating the fracture model
(Eq. (1)). Three of the specimen geometries used by Johnson and
Cook were analyzed to determine gage section volumes. The
resulting volumes were 0.07 cm? 011 cm? and 0.31 cm’
Comparing these to a finely resolved 3D computation, which may
use an element volume of 0.001 cm?, this is a difference of about
two orders of magnitude; i.e., «=0.01.

The difficulty is shown graphically in Fig. 5, where Eq. (19) is
plotted. In all cases, the size effect factor begins to grow without
bound for small values of « (small element volumes). But problems
occur long before the size effect factor becomes unbounded. For
example, a ratio of volumes («) of 0.01, combined with a Weibull
modulus of m = 2 gives a size effect factor of more than 10. Failure
strains for those elements will be (on average) 10 times the failure
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Fig. 5. The size effect factor under various conditions of volume ratio and Weibull
modulus.

strains in the calibration experiment, possibly leading to a material
unrealistically resistant to failure. Quantified examples of this issue
will be given in the next section.

Fig. 6 shows another view of the same issue. For « = 0.01,
Weibull moduli less than 6 or so can be problematic. A ratio of
volumes near unity causes no difficulty with any Weibull modulus.

Incidentally, the problem of size effects leading to extremely
large shear failure strains in the current study does not occur in the
alternative statistical perturbations explored by Brannon et al. [3]
(see Fig. 1). With that approach, the hydrostatic tensile strength
exhibits a size effect similar to that in Figs. 5 and 6, but the strength
in shear can never become unbounded. In fact, the size dependence
of shear strength in Brannon’s approach is very similar in character
to that reported for concrete [15] and other quasibrittle materials.

5. Application of the model: Perforation of an armor plate

Examples using different reference volumes and various
values of the Weibull modulus are instructive. CTH was used to
model a 1-inch-thick rolled homogeneous armor steel (RHA)
plate impacted at normal incidence by a 30 mm tungsten APDS
(Armor Piercing, Discarding Sabot) round at 1020 m/s. The
Mie—Gruneisen equation of state and Johnson—Cook strength
model were used to model both the penetrator and the target.
CTH library values were used for the model constants. John-
son—Cook fracture with Weibull-distributed fracture constants
was used to model the RHA; see Eqgs. (2) and (3), with constants
taken from the CTH library. The statistical population included
at least 140,000 samples in all simulations. The tungsten pen-
etrator was modeled with the standard (non-statistical) John-
son—Cook fracture model, using CTH library constants. At failure
of the material in an element (as predicted by the John-
son—Cook fracture model), CTH inserts sufficient void into the
element to relax the tensile pressure to zero. The simulations
were fully 3D (i.e., symmetry was not employed), to take
advantage of the asymmetry of the random placement of initial
failure strains.

Fig. 7 shows the debris field behind the RHA plate at 250 ps
after impact for various values of the Weibull modulus m. For the
computations in Fig. 7, the reference volume is 0.100 cm?,
roughly the value of the gage sections for the Johnson—Cook
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Fig. 6. The size effect factor for various volume ratios and Weibull moduli ( is the
volume ratio, V/V).
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Fig. 7. Simulation results for a reference volume of 0.100 cm?; sf is the size effect factor (Eq. (19)).

experiments. The grid is uniform, where each computational
element is a cube, 0.08 cm on a side. Thus

~0.000512cm?
~0.100cm3

Damage as predicted by the Johnson—Cook Fracture model (JCF)
is plotted on the RHA material: blue is no damage, red is fully
damaged. The m = 0 case'? shows the result for the standard JCF,
where all computational elements contain identical initial failure

= 0.00512. (20)

12 A value of m = 0 is not permissible in the Weibull distribution function (Eq.
(12)). Rather, a value of zero for the Weibull modulus is a flag for CTH, instructing it
to use the standard Johnson—Cook model for each material so specified.

strains (the narrowest distribution possible). There are many RHA
fragments behind the plate, all of which are completely failed. For
m = 1 the size effect factor is quite large, resulting in the material
being artificially resistant to JCF failure.'® The median initial failure
strain for this case is unrealistically large, 270 cm/cm, resulting in

13 CTH includes another failure criterion which is always active. This model

predicts damage based on a user-supplied hydrostatic tensile pressure for
undamaged material, called “PFRAC”, and functions independently of JCF. In this
case, a failed element is an element whose tensile pressure exceeds the user-
supplied value. In the same way as previously described for JCF, tension is relaxed to
zero by void insertion. The material will no longer support tension or shear. This is
the mechanism causing the fragmentation of the JCF-undamaged material seen in
Fig. 7.
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Fig. 8. Simulation results for a reference volume

no damage of the RHA. The debris field and lack of damage are
unrealistic, at best. But as m increases, the small value of « is
overcome by the exponent so that the size effect factor approaches
unity (Eq. (19) and Fig. 6). The initial failure strain becomes more
reasonable, and the result of the simulation appears more realistic.
Consistent with expectations based on Fig. 6, for a = 0.00512 a value
of m = 8 provides results that are not quite reasonable; m = 16 is
required to provide reasonable results for the current choice of
reference volume. So here, a size effect factor of less than about 1.4
is required.

If the reference volume is equal to the element volume
(0.000512 cm? here), « is unity and the size effect factor is one for
all values of m. The results for this case are quite different, as can be
seen in Fig. 8. The median of the distribution of initial failure strains

of 0.000512 cm?; sf is the size effect factor (Eq. (19)).

(§6) should be the same for all values of m if « = 1 (Eq. (19)). The
computed values are as constant as the random number generator
and the finite sample size permit. The median value of (D, + D) for
RHA was taken as 1.3, and the medians of the generated pop-
ulations are within 5%.

The results in Fig. 8 are more reasonable than those of Fig. 7. The
debris field is made up of largely, if not completely, failed material.
The debris fields for the Weibull cases are asymmetric, owing to the
spatial asymmetry of the distribution of initial failure strains. The
Weibull modulus plays a major role in the number of RHA frag-
ments and in the resulting size distribution. For a size effect factor
of one, the larger the Weibull modulus, the more like the (narrowly
distributed) standard Johnson—Cook fracture case (m = 0) the
result becomes. For the m = 16 case, the distribution of initial
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failure strains is narrowest of the Weibull-distributed cases
examined (see Fig. 3), and the result is most similar to the result for
the standard Johnson—Cook model.

6. Application of the model: predicting fragment
distributions

The utility of the statistical fracture model is examined by
comparing two CTH simulations to experiments. Conditions of the
simulations and experiments are the same as previously discussed:
a 1-inch-thick RHA plate impacted at normal incidence by a 30 mm
APDS tungsten round at 1020 m/s. Perforation of the target by the
penetrator results in target spall and penetrator fragmentation
behind the armor plate, known collectively as Behind Armor Debris
(BAD). The fragments in the experiment were captured in a water
tank and later recovered and measured. Larger fragments that
passed through the water tank (e.g., the residual penetrator) were
captured in a subsequent stack of Celotex. Over 96% of the penetrator
mass was recovered, and 75% (+15% principally due to the uncer-
tainty of weight and volume measurements on a large target plate)
of the mass removed from the RHA target plate was recovered.

Fig. 9 shows the frequency distribution of fragment mass for the
experiments and simulations. The ordinate gives the number of
fragments of BAD with mass greater than the abscissa value. The
gray region shows the range of values obtained in two experiments.
The lower line indicates the CTH prediction using the standard (non-
statistical) Johnson—Cook fracture model. The upper line indicates
the CTH prediction using the statistical model with a Weibull
modulus of 2 for the penetrator and 8 for the target'® (o« = 1 for both
materials). Since the experiment did not distinguish between frag-
ments from the RHA plate and fragments from the Tungsten pen-
etrator, the simulation results present the total of both materials.

The graph shows that with the standard Johnson—Cook fracture
model the number of very small fragments is over predicted, while
the number of larger fragments is under predicted. Although the
statistical Johnson—Cook fracture model over predicts the number
small fragments as well'®, the important intermediate sizes are
well predicted® (the few large-sized fragments are less likely to
cause widespread damage). The moduli for the two materials were
not optimized, so possibly a better fit could be obtained. Some
adjustment in the median initial failure strains (ductility) and yield
strengths also may lead to an improved match to the data.””

The plot of CTH results seen in Fig. 9 was made possible by
software developed at the U.S. Army Research Laboratory (ARL)
[16], called Frag Finder, which examines CTH output files and
identifies all individual bodies in the computational domain at the
computational cycle under study, and outputs the volume, mass,
position vector and velocity vector for each. Without this tool,
modeling Behind Armor Debris fields would be intractable.

14 Little data presently exists for Weibull moduli for failure of these materials. The
values used were selected because they fit the fragment population fairly well. The
objective here was not to determine these moduli, but rather to show that CTH
predictions could be improved by use of statistical fracture.

15 Qver prediction is not as severe for the statistical model: 295 total fragments vs.
346 for the standard model compared to 125 4 25 fragments recovered in the two
experiments. However, many very small fragments undoubtedly were not
recovered.

6 In simulations of recent experiments, both models accurately (within 5%)
predicted the total mass of RHA fragments.

17" Another variation in the simulation is possible in the present implementation
of this statistical fracture model in CTH. The user has the ability to change the seeds
for the random number generator (used in Eq. (12) to compute initial failure strain
realizations), thus changing how the initial failure strains are spatially distributed
(although the statistics would remain unchanged, as long as m remains
unchanged). The effect of this variation on simulation results was not tested here.
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Fig. 9. Comparison of a statistical fracture calculation to a standard fracture calcula-
tion. The range of two experiments is shown in gray. For the statistical case, the
Weibull modulus is 2 for the penetrator, and 8 for the target.

7. Further remarks on the size effect

The statistical fracture model as presented here is a work in
progress. Some aspects of statistical fracture have not yet been
considered, and the incompleteness is manifested in the issues
with the size effect that have been discussed. Two important issues
that still need to be addressed are interaction of flaws and corre-
lated statistics.

The model as derived here, i.e., Eq. (12), is based on the
assumption that flaws fail independently, as discussed previously
(see Eq. (4)). But in reality, flaws in close proximity will affect each
other. Interactions are varied, for example a crack in a plane normal
to that of a growing crack may arrest the growth of the crack, while
one in the same direction may facilitate its growth.

The second problematic assumption is that initiation of failure
at a point will lead to cascading catastrophic failure everywhere.
Recent on-going research indicates that geometrically random
failure probabilities (as exist in the current model) do not provide
cascading catastrophic failure. What may be going on at the
microscale is correlated statistics, wherein the occurrence of a weak
point in a material increases the probability that neighboring
points also will be weak. This correlation is not included in the
present model.

So the model as presented here is incomplete, but nevertheless
is a first step in the right direction. Until the correct size effect
functions (or correlated statistics) can be incorporated into the
model, setting the reference volume equal to the element volume is
reasonable. Of course this will make difficult the reproducing of size
effects observed in the lab, and may introduce mesh-dependency
into simulations. When the researcher is aware of these issues, the
model (even in its present form) is still a very useful tool.

8. Conclusions

The following conclusions may be drawn from this study:

Including inherent variability in continuum mechanics simula-
tions leads to more realistic predictions. For example, the statistical
nature of behind armor debris experiments can now be modeled
in CTH.
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Experimental data clearly show size effects in strength and
failure but the proper way to incorporate them into a damage
model remains a subject of research.

The present theory is based on statistics for the onset of failure
whereas progression of failure undoubtedly requires either corre-
lated statistics and/or revisions of the size effect to account for flaw
interactions.

As with any computational damage model, further studies are
warranted to ensure mesh independence of the predictions and
accuracy in a variety of applications.
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