
Matrix Algebra 

Introduction 

In this appendix, we provide an introduction to matrix algebra. We will consider the 
concepts relevant to the finite element method to provide an adequate background for 
the matrix algebra concepts used in this text. 

A A.l Definition of a Matrix a 
A matrix is an m x n array ofnumbers arranged in m rows and n columns. The matrix 
is then described as being of order m x n. Equation (A.1.1) illustrates a matrix with m 
rows and n columns., 

If m # n in matrix Eq. (A.I.l), the matrix is called rectangular. If m = 1 and 
n > 1, the elements of Eq. (A.1 .I) form a single row called a row matrix. If m > 1 and 
n = 1, the elements fonn a single column called a c o b  matrix. If m = n, the array is 
called a square m a e .  Row matrices and rectangular matrices are denoted by using 
brackets [ I ,  and column matrices are denoted by using braces { ). For simplicity, 
matrices (row, column, or rectangular) are often denoted by using a line under a 
variable instead of surrounding it with brackets or braces. The order of the matrix 
should then be apparent from the context of its use. The force and displacement 
matrices used in structural analysis are column matrices, whereas the stiffness matrix 
is a square matrix. 

To identify an element of matrix g, we represent the element by aq, where the 
subscripts i and j indicate the row number and the column number, respectively, of g. 
Hence, alternative notations for a matrix are given by 

g = [a] = [ar] (A. 1.2) 
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. . Numerical examples of special types of matrices are given by Eqs. (A.1.3)- 
(k1.6). A rectangular matrix _a is given by 

where g has three rows and two columns. In matrix _a of Eq. (A. 1. l), if rn = 1, a row 
matrix results, such as 

If n = 1 in Eq. (A.I.l), a column matrix results, such as 

If m = n in Eq. (A.1.1), a square matrix results, such as 

(A. 1.4) 

Matrices and matrix notation are often used to express algebraic equations in 
compact form and are frequently used in the finite element fornulation of equations. 
Matrix notation is also used to simplify the solution of a problem. 

A.2 Matrix Operations A 
We will now present some common matrix operations that will be used in this text. 

Multiplication of a Matrix by a Scalar . 

If we have a scalar k and a-matrix _c, then the product g = k_c is given by 

-that is, every element of the matrix g is multiplied by the scalar k. As a numerical 
example, consider 

The product _n = kg is 

Note that if _c is of order m x n, then g is also of order m x n. 
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Addition of Matrices 

Matrices of the same order can be added together by summing corresponding ele- 
ments of the matrices. Subtraction is performed in a similar manner. Matrices of 
unlike order cannot be added or subtracted. Matrices of the same order can be added 
(or subtracted) in any order (the commutative law for addition applies). That is, 

or, in subscript (index) notation, we have 

As a numerical example, let 

 he sum _a + _b = 6 is given by 

Again, remember that the matrices _a, _b, and 6 must all bk of the same order. For 
instance, a 2 x 2 matrix cannot be added to a 3 x 3 matrix. 

Multiplication of Matrices 

For two matrices _a and 4 to be multiplied in the order shown ih Eq. (A.2.4), the 
number of columns in _a must equal the number of rows in _b. For example, consider 

If _a is an m x n matrix, then _b'must have n rows. Using subscript notation, we can 
write the product of matrices _a and _b as 

n 

leg] = (A.2.5) 
-1 

where n is the total number of columns in _a or of rows in _b. For matrix _a of order 
2 x 2 and matrix _b of order 2 x 2, after multiplying the two matrices, we have 

For example, let 

The product g4 is then 

2(1) + l(2) 2(- 1) + l(0) 
@ = [,(I) + 4 2 )  3(- 1) + 2(0)] = [: I:] 
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In general, matrix multiplication is nor commutative; that is, 

gb #& (A.2.7) 

The validity of the product of two matrices _n and _b is commonly illustrated by . b = _ c  
( i x e ) ( e x j )  ( i x j )  

where the product matrix _c will be of order i x j; that is, it will have the same number 
of rows as matrix _a and the same number of columns as matrix _b. 

Transpose of a Matrix . 

'Any matrix, whether a row, column, or rectangular matrix, can be transposed. This 
operation is frequently used in finite element equation formulations. The transpose of 
a matrix _a is commonly denoted by g T .  The superscript T is used to denote the 
transpose of a matrix throughout this text. The transpose of a matrix is obtained by 
interchanging rows and columns; that is, the first row becomes the first column, the 
second row becomes the second column, and so on. For the transpose of matrix _a, 

[aul = IaiilT (A.2.9) 
For example, if we let . = [; i] 
then 

where we have interchanged the rows and columns of g to obtain its transpose. 
Another important relationship that involves the transpose is 

(&)* = _bTgT ( ~ ~ 2 . 1 0 )  

That is, the transpose of the product of matrices _a and _b is equal to the transpose of 
the latter matrix _b multiplied by the transpose of matrix g in that order, provided the 
order of the initial matrices continues to satisfy the rule for matrix multiplication, Eq. 
(A.2.8). In general, this property holds for any number of matrices; that is, 

( g & . . . ~ ) ~ = & ~ . . .  _cT_bTgT (A.2.11) 

Note that the transpose of a column matrix is a row matrix. 
As a numerical example of the use of Eq. (A.2.10), let 

First, 

Then, 
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and for 03 or dy, we have 

(rzl ru) = (-sin8 cos8) . (A.2.23) 
.. 

or unit vectors 1 and J can be represented in terms of unit vectors 1 and 5 [also see 
Section 3.3 for proof of Eq. (A.2.24)] as 

T =  icosB+jsinO 

f = -isinO+jcosO 

and hence 

r:, + t:, = I l;l + t& = 1 

and since these vectors are orthogonal, by the dot product, we have 

(111 112)' (121 122) 

or 11 1121 + l1zIZz = 0 . (A.2.26) 

or we say 2: is orthogonal and therefore zTz = 3:zT = and that the transpose is  its 
inverse. That is, 

T T  = _T-1 - (A.2.27) 

Differentiating a Matrix 

A matrix is differentiated by differentiating every element in the matrix in the con- 
ventional manner. For example, if 

x3 2 x 2  3x 

the derivative dg/& is given by 

1 5x4 

Similarly, the partial derivative of a matrix is illustrated as follows: 

In structural analysis theory, we sometimes differentiate an expression of the 
form 
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where U might represent the strain energy in a bar. ~xpression (A.2.31) is known as a 
quadratic fonn. By matrix multiplication of Eq. (A.2.31), we obtain 

U = f (allxz + 2ulzxy + a&) 

Differentiating U now yields 

Equation (A.2.33) in matrix form becomes 

A general form of Eq. (A.2.31) is 

Then, by comparing Eq. (A.2.31) and (A.2.34), we obtain 

where x, denotes x and y. Here Eq. (A.2.36) depends on matrix g in Eq. (A.2.35) being 
. symmetric. 

Integrating a Matrix 

Just as in matrix diflerentiation, to integrate a matrix, we must integrate every element 
in the matrix in the conventional manner. For example, if 

I 5x4 

we obtain the integration of _a as 

3x x x5 

In our linite element formulation of equations, we often integrate an expression of the 
form 
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The triple product in Eq. (A.2.37) will be symmetric if A is symmetric:%e form 
[ x ] ~ [ A ] [ x ]  is also called a quadratic form. For example, letting 

9 2 3 
[ A ] = [ 2  3 0 5  8 .I [XI={,) 

Using Eq. (A.3.2), we find that the cofactors of matrix g are 

we obtain 

I ~ I I - I A I { x )  = [ X I  x2 x3l 

= 9.4 + 4xIx2 + 6xIx3 + 8xi + 5 4  
which is in quadratic form. 

A A.3 Cofactor or Adjoint Method 
to Determine the Inverse of a Matrix 

Similarly, We will now introduce a method for finding the inverse of a matrix. This method is 
useful for longhand determination of the inverse of smaller-order square matrices 
(preferably of order 4 x 4 or less). A matrix _a must be square for us to determine its 
inverse. 

We must first define the determinant of a matrix. This concept is necessary in 
determining the inverse o f a  matrix by the cofactor method. A determinant is a square 
array of eletnenrs expressed by 

Therefore, from Eqs. (A.3.5) and (A.3.6), we have 

c= [I!! !I i ]  
The determinant of g is then 

where the straight vertical bars, I I, on each side of the array denote the determinant. 
The resulting determinant of an array will be a single numerical value when the array 
is evaluated. 

To evaluate the determinant o fg ,  we must first determine the cofactors of [aii]. 
The cofactors of [a,.] are given by 

Cii = (- I ) ~ + ~ I ~ I  (A.3.2) 
I 

where the matrix 4, called thefirst rninor of [av], is matrix _a with row i and column j 
deleted. The inverse of matrix g is then given by I 

Igl = x a i l ~ v  with i any row number (1 < i 6 n) (A.3.8) 
j= l 

n 

or  Igl= z a , , ~ , ,  with i any column number (1 4 i < n) (A.3.9) 
j= l 

For instance, if we choose the first rows of _a and C, then i = 1 in Eq. (A.3.8), and j is 
summed from I to 3 such that 

where _C is the cofactor matrix and is the determinant of _a. To illustrate the method 
ofcofactors, we will determine the inverse of a matrix g given by Using the definition of the inverse given by Eq. (A.3.3), we have 
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We can then check that 

The transpose of the cofactor matrix is often defined as the adjoint matrix; that is, 

adjg = cT 
Therefore, an alternative equation for the inverse of g is 

adj g .-I = - - la1 
An important property associated with the determinant of a matrix is that if the de- 
terminant of a matrix is zero-that is, Igl = 0-then the matrix is said to be singular. 
A singular matrix does not have an inverse. The stiffness matrices used in'the finite 
element method are singular until sufficient boundary conditions (support conditions) 
are applied. This characteristic of the stiKness matrix is further discussed in the text. 

A& A.4 Inverse of a Matrix by Row Reduction A 
The inverse of a nonsingular square matrix _a can be found by the method of row 
reduction (sometimes called the Gauss-Jordan method) by performing identical 
simultaneous operations on the matrix g and the identity matrix I (of the same order 
as _a) such that the matrix g becomes an identity matrix and the original identity 
matrix becomes the inverse of _a. 

A numerical example will best illustrate the procedure. We begin by converting 
matrix _a to an upper triangular form by setting all elements below the main diagonal 
equal to zero, starting with the first column and continuing with succeeding columns. 
We then proceed from the last column to the first, setting all elements above the main 
diagonal equal to zero. 

We will invert the following matrix by row reduction. 

.= [i 1 p] 
To find _ a - I ,  we need to find x such that ax = 1, where 

xl2 XI3 

3 [::: xa x23] 

x3l x32 xu 

That is, solve 
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We begin by &ting g and 1 side by side as 

where the vertical dashed line separates _a and 1. 
1. Divide the first row of Eq. (A.4.2) by 2. 

2. Multiply the first row of Eq. (A.4.3) by -2 and add the result to the 
second row. 

1 1 1 '  2 1  4 . 0  0 

0 I I ; -1 1 o] 
1 1 I I 0 0 1  

3. Subtract the Erst row of Eq. (A.4.4) from the third row. 

4. Multiply the second row of Eq. (A.4.5) by -1 and the third row by 2. 

5. Subtract the thud row of Eq. (A.4.6) from the second row. 

6. Multiply the third row of Eq. (A.4.7) by -4 and add the result to the 
first row. 




