
ME 3200 Mechatronics I Laboratory

Lab 1: An Introduction to CVI

 This exercise introduces LabWindows/CVI, a powerful computer program for
data input and output. The software is used in conjunction with a Data AcQuisition
(DAQ) card mounted inside each computer. Connections to the DAQ cards are
accomplished via the terminal blocks at each lab station. A project file can be created for
a specific task. The project file consists of three other files: a *.c file, a *.h file, and a
.uir file, with the “” being the project name. The C file is written in the familiar ANSI
C programming language and tells the computer how to interact with the data acquisition
board. The H file is known as a header file. It allows the user to call on previous written
functions organized into libraries. The UIR file is the graphical User InteRface built by
the engineer to suit his/her experimental needs. In this exercise, you will design your
own graphical user interface to take a voltage reading with the DAQ, compare it to a
setpoint (a number you choose), and output the difference to the DAQ. A simple
schematic of this is shown in Figure 1.

Figure 1. Summing junction for CVI experiment.

Getting Started:

1. Locate the directory C:\CVI\PROGRAMS\MECH_I and make a folder for your
lab team. This folder will be used to save the lab data for the rest of the semester,
and will be deleted at the end of the semester.

2. Open CVI by double clicking on the icon. Create a new project file by selecting
File/New/Project, accept all the defaults, and then save it to your folder by
selecting File/Save As. Find the folder you created for your team as the
destination folder, and give the file an appropriate name.

3. Locate the template application file by selecting File/Open/Source (*.c), and then
locate C:\CVI\PROGRAMS\LABS\TEMPLATE.C. Save this file to your
directory, giving it the same name you gave your project file.

The template file you just saved is a basic application file that can be modified to suit

the needs of different experiments. To create your project, lines of code will be inserted
or modified.

4. Create the graphical user interface by selecting File/New/UserInterface (*.uir),
and then save it to your directory with the same name used for the other files.

5. Locate the header file for your project by selecting File/Open/Include (*.h) from
the project window. The file should already be there and it should have the same
name as the project and application files. Selecting this will bring up a window
with the header file in it. Any changes to the header file will be automatic.

6. Add the separate files to the project by selecting File/Add file to project on each
of the component files. There should now be three files listed in your project
window (i.e., *.c, *.h, *.uir, where “*” is the name you chose for your project.)

7. Bring the C file to the front. Look a few lines down to the list of header files that
are included. Find the one that says, “include name.h” and change “name” to the
name of your project.

8. Look down a few more lines to find a line that says:

panel_handle=LoadPanel(0,"name.uir",PANEL)

and change name to the name of your project.

Now that you have all of the necessary files in the right place and properly

interconnected, it is time to put together your graphical user interface.

Creating the Graphical User Interface:
1. Bring the UIR window to the front and select Create/Panel. Your panel will then

appear. It will say “untitled panel” at the top. You can resize it by dragging the
corners, just like with other Windows applications.

2. Double click anywhere on the panel to play with settings like color, title, etc. Just
do not change the constant name on this panel. If you look on the right, you will
see a field that says “constant name: PANEL”. Do not go near it. Your panel is a
constant in the C file as verified here.

3. Create a knob, dial, slider, or gauge to control your setpoint. The setpoint is a
voltage that you will choose. Think of it as a desired voltage. To create the knob,
dial, slider, or gauge, select Create/Numeric, and then select the type of numeric
that you want. Double click on your new numeric. An information window
should appear. Name the numeric appropriately in the “constant name” field.
The name you give it will be used in the C file, so choose wisely. Remember also
that CVI is case sensitive. Give the numeric a label, perhaps the same name as its
constant name. This name will appear on the display above the component.

4. Create numeric items for the input voltage and the error. You will be reading the
input voltage from the DAQ using the input voltage numeric. This value will be
subtracted from your setpoint to give the error, which will be read on the error
numeric. Follow the instructions from the previous step to create these numeric
items. Give your numeric items constant names and labels as before.

5. Your panel should now have three numeric items on it. Notice how you can move
them wherever you choose by clicking, dragging, and dropping. Notice also how
double clicking on an item brings its information window to the front.

6. Create a button to take a sample. Every time the user clicks on this button, CVI
will run through the program. To create your start button, select
Create/ToggleButton. There will be a variety of buttons from which you can
choose. Give your button the proper constant name, label, etc. In addition, in the
“Callback Function” field, type “START_FUNC”. This tells the C program to
run the START_FUNC function, which will be written later.

7. Create a quit button by following the instructions in the step 6. When this button
is pressed, your program will shut down and your panel will close. In the
“Callback Function” field, type “QUIT_FUNC”. This tells the C program to run
the QUIT_FUNC function.

8. Save your UIR file. When you save the UIR file, your header file is automatically
updated and brought to the front. Remember that CVI automatically modifies
header files, so there is no need for you to ever modify them yourself. With this
in mind, when your header file comes up, do not change anything.

Modifying the Application Code:

1. Check near the bottom of your header file. Look for two lines that look similar
to:

int QUIT_FUNC(int panel, int control, int event, void *callbackData, int eventData1, int eventData2);
int START_FUNC(int panel, int control, int event, void *callbackData, int eventData1, int eventData2);

These lines reference the start function and quit function in the C file.

2. Bring the C file to the front. Look for the quit function. It starts in the same way
as the line in the header file, and should end with return(0) and a comment similar
to /*End of QUIT_FUNC*/. Highlight the quit function and copy it to the
clipboard (ctrl+c). Paste the contents of the clipboard underneath the quit
function (ctrl+v). Replace QUIT with START and omit the line that reads
QuitUserInterface(0);. Your new start function should look like this:

int START_FUNC(int panel, int control, int event, void *callbackData, int eventData1, int eventData2)

{
if(event==EVENT_COMMIT)
{

}
return(0);

} /*End of START_FUNC*/

The space between the braces in the middle is where you will modify the code to
interface the panel on the graphical user interface with the DAQ.

3. Leave your cursor in the space between the two middle braces. Use your mouse
to select
Library/UserInterface/ControlsGraphicsStripcharts/General/GetControlValue.
A new window will appear. Locate the “panel handle” field and enter the formal

name of your panel, namely “PANEL”, remembering that CVI is case sensitive.
Locate the “Control ID” field and enter the path to the setpoint control (i.e.,
PANEL_SETPOINT). Locate the “value” field and enter the variable name (i.e.,
&setpoint). (The ampersand (&) is a pointer in C. Sometimes C needs to be
pointed to its variables introductions. A quick test to see if a pointer is needed is
to right click in the “value” field, and if a message that says “passed by reference”
appears, C needs a pointer.) The field at the bottom of the window shows how
these decisions modify the function call. Select Code/Insert Function Call. Close
the window.

4. Check your C code. The previous step wrote and inserted the line you see there.
This line of code instructs CVI to check the entered value for the setpoint and
assign that value to the appropriate variable.

5. Select Library/DataAcquisition/AnalogInput/SinglePoint/MeasureVoltage. At the
bottom of the window, locate a box with the function call AI_VRead (analog input
voltage reading). Set the board slider to “1”, pick an input channel (usually
channel 0, since it is in the top left corner of the DAQ board), and set the gain to
“1” (meaning that you multiply the value by one). Locate the “voltage” field and
enter the variable name (i.e., &v_in). The field at the bottom of the window
shows how these decisions modify the function call.Select Code/Insert Function
Call to update your application file. Close the window. Check your C code to
make sure that it was updated.

6. On the next line of the C code, type in error=setpoint-v_in; or its equivalent with
the variable names you chose. Press Enter to get to the next line.

7. Select Library/DataAcquisition/AnalogOutput/SinglePoint/GenerateVoltage. A
window should appear. Move the board slider to “1”, choose the output channel
(typically channel 0), and enter error or the variable you are using in the
“voltage” field. The field at the bottom of the window shows how these decisions
modify the function call. Select Code/Insert Function to update the application
file. Close the window. Check your C code to make sure that it was updated.

8. To display the v_in and the error on the numeric items you created, select
Library/UserInterface/ControlsGraphicsStripcharts/General/SetControlValue.
Follow the same steps to fill in the fields as you did in step 3. Select Code/Insert
Function to update the application file. Close the window. Check your C code to
make sure that it was updated. Locate the line that says, “int panel_handle;”. On
the next line declare your new variables as doubles (i.e., double setpoint, v_in,
error;). Save your code.

Testing the Panel:

The code that was just completed reads the voltage level at the input channel you
chose, subtracts it from the setpoint you can actively select, and outputs the difference
from the output channel you chose. To test this, you need to concoct a variable
voltage source. This will be accomplished with the voltage divider, as shown in
Figure 2.

Figure 2. A voltage divider.

 The formula that relates Vin to Vout in a voltage divider is as follows:
2

1 2
out in

R
V V

R R
=

+
 (1)

where Vin is the input voltage in volts, Vout is the output voltage in volts, R1 is the output
resistance in ohms, and R2 is the input resistance in ohms. The way that you will build a
voltage divider is using the potentiometer on your bench. A potentiometer is a resistor
that has voltage applied across it. A wiper (an electrical contact attached to a knob) is
used to sweep along the resistor and create a voltage divider anywhere along its length.

1. Locate the potentiometer on your bench. It is accessed through three connectors
underneath a knob. Take a cable with banana plugs on both ends and connect one
side of the potentiometer to the 5V power supply. Take another banana plug
cable and connect the other side of the potentiometer to ground. Connect the
power supply ground to the appropriate AI_GND (the left one corresponds to the
first row of AI channels, and the right one corresponds to the second row).
Connect the middle of the potentiometer (the wiper) to the AI channel you chose
in your code. Switch on the power supply.

2. Bring the PRJ window to the front. Select Run/Run Project. A window will
appear that looks just like your UIR that you created. This is where the actually
interfacing occurs. Click your start button.

3. The numeric items should change instantly, reflecting the v_in and the error.
Verify that these are reading correctly using your bench multimeter. Remember
to use the proper ground on the DAQ when making this reading. When reading
v_in use the proper AI_GND, and when reading the error use the AO_GND.

4. Change the setpoint on the display. Turn the knob on the potentiometer. Click
the start button again and notice the changes. Verify the values with the
multimeter. Show your TA that your panel works.

5. When you are satisfied with the experiment, click on the quit button. This will
shut down the display. Print a copy of your panel from the UIR window, and save
a copy of the C file to disk for your report. Exit CVI, turn off the power supply
and multimeter. Clean up all of the wires.

6. ANSWER ALL OF THE QUESTIONS ON THE FOLLOWING PAGE AND
CHECK OFF WITH YOUR TA.

Questions:
1. What is the function call for the DAQ to take a voltage reading? What are the

arguments used, and what do these arguments mean?

2. What is the function call for the DAQ to output voltage? What are the arguments
used, and what do these arguments mean?

3. Explain how pushing a button on the UIR relates to the program execution. Why
did you enter in the “Function Call” field on the start and stop buttons, but not on
the numeric items?

4. Write a short subroutine to acquire data from AI_1, multiply the data by 1.5, and
then write the data to AO_1. Fill in the braces in START_FUNC.

5. Suggest two applications for the LabWindows software.

