
1 of 7 Revised 10/21/03 

ME 3200 Mechatronics Laboratory 

Lab Exercise 7: Ultrasonic Sensors 
 
Introduction 
 
The objective of this lab is to provide you with the experience of using an ultrasonic sensor.  Ultrasonic sensors, or 
sonar sensors, are used in a wide range of applications involving range finding and object detection and avoidance.  
For example, the Polaroid Corporation used sonar sensors in their auto-focusing cameras to detect the distance to an 
object for focusing purposes.  Sonar sensors are excellent for mobile robot applications; especially if a robot needs 
to navigate through a room filled with obstacles.   
 
How Sonar Sensors Work 
 
Figure 1 below shows a simple schematic of a generic sonar sensor in action.  An ultrasonic sound burst, or ping, is 
emitted from the transducer, the sound waves travel until reflected off of an object, and the echoed sound waves 
return to the transducer.  The echo may be of smaller amplitude, but the carrier frequency should be the same as the 
ping.  An external timer records the time-of-flight (the time that the sound waves take to travel to and from the 
object), which can be converted to a distance measurement when considering the speed of sound in air.  As the 
transmitted sound waves propagate from the transducer, they expand in the shape of a cone of angle θ as depicted in 
Figure 1 below.  This cone defines the area over which the sonar is effective. 
 

 

Figure 1: Functional diagram of a generic sonar sensor. 
 
Limitations of Sonar Sensors 
 
Sonar sensors are not ideal devices.  They are limited in resolution, range, and the size of object they can detect.  In 
addition, the external timing circuits of some sonar sensor systems are subject to false echoes.  The time-of-flight 
values returned by the sensor may not correspond to the actual distance to the object.  One solution to this problem 
is to average several sonar time-of-flight readings and disregard unreasonable time-of-flight readings (like negative 
numbers).  This method can greatly decrease the effects of false echoes on sonar measurements. 
 



2 of 7 Revised 10/21/03 

The Devantech SRF04 Ultrasonic Range Finder 
 
The sonar used in the lab and on the project is the Devantech SRF04 Ultrasonic Range Finder.  An important feature 
that distinguishes itself from the generic sonar sensor in Figure 1 is that it has a separate transmitter and receiver.  
This allows for a smaller minimum detectable distance than sonar sensors that rely on a single transducer to act as 
both a transmitter and a receiver.  The Devantech sonar produces a 40kHz ping—roughly twice the highest 
frequency detectable by the human ear.  This frequency is used to reduce the chance of false echoes returning from 
other sources in the environment since it is unlikely that a 40 kHz sound wave will come from any other source than 
the actual ultrasonic echo.  The external timing circuit starts timing when the ping is generated and listens for a 40 
kHz echo to stop the timer.  An advantage of the SRF04 (over the Polaroid units) is that the frequency generating 
circuit is integrated with the printed circuit board that supports the ultrasonic transducers.  This minimizes the 
amount of wiring needed to interface the sensor with a control platform.  For more information on the SRF04 sonar 
sensor, follow the links on the class web page associated with this lab exercise or visit the SRF04 distributor, 
Acroname, at www.acroname.com.  Acroname also sells many other useful robotics related devices.  Following are 
direct links to the SRF04 information pages: 
 

• http://www.acroname.com/robotics/parts/R93-SRF04.html 
• http://www.acroname.com/robotics/info/examples/srf04-3/srf04-3.html 

 
Interfacing the SRF04 with the Handy Board 
 
In order to interface the SRF04 with the Handy Board, the user must wire the sonar to the Handy Board and 
download a sonar program to the Handy Board.  The wiring diagram for the SRF04—Handy Board circuit is shown 
in Figure 2 below.  The red wire is connected to the regulated five volt power supply bus of the Handy Board, the 
black wire is connected to the ground bus, the green wire is connected to port nine of the digital input bus, and the 
yellow wire is connected to port seven of the digital input bus.  After making these connections, a sonar program 
must be loaded onto the Handy Board.  The program used in lab is sonar.c ; the example on the Acroname website 
(second hyperlink above) may also be used.  Once this program is loaded, the Handy Board must be initialized to 
work with the sonar unit by calling the function void sonar_init()—a sub-function of the sonar.c program.  
This function changes the digital nine input into a digital output and initializes the sonar unit.  The remaining code in 
the sonar.c program initiates a ping and measures the time since the ping was sent till the echo returns.  This time 
is returned as an integer equivalent to the number of CPU clock cycles (or ticks) of the Handy Board’s 
microprocessor.  Upon completion of these steps the Handy Board is ready to use the SRF04 range finder.  

 

Figure 2: Wiring diagram for the SRF04—Handy Board interface. 
Figure used with permission from Acroname 

(http://www.acroname.com/robotics/info/examples/srf04-3/srf04-3.html) 



3 of 7 Revised 10/21/03 

Laboratory Exercise 
 
Equipment Needed:  

• A CutieBot equipped with a Devantech SRF04 Ultrasonic Range Finder 
• A Telephone Cord 
• A 12 Volt, 500mA DC transformer. 
• A Yardstick 

1. Interface the Handy Board of the CutieBot with the computer using the procedure described in the Preparing 
the Handy Board for Use section of the Introduction to the Handy Board lab.  Notice that when the Handy 
Board interfaces with Interactive C the sonar.c program is automatically loaded. 

2. With the Handy Board in interactive mode, initialize the CutieBot’s sonar by executing the sonar_init(); 
command at the Interactive C command prompt. 

3. Place an object about ten inches in front of the CutieBot, type printf(“Ticks=%d\n”,sonar()); at the 
command prompt several times, and observe how the sensor measurement varies each time the command is 
executed. 

4. Repeat step three, but this time, move the object further away from the CutieBot.  Notice that the returned 
integer is proportional to the distance to the nearest object as you move the object around. 

5. Use the sample code provided in Figure 3 to write a program that averages four time-of-flight readings. Save it 
for your records, and load it onto the Handy Board. 

 
int i;     /* a loop counter */ 
int num;    /* the number of readings to average */ 
 
int ticks;    /* the # of clock ticks returned for one reading */ 
int ticksAvg;   /* the average of num readings */ 
 
void main() { 
   num = 4;    /* set the number of readings to average */ 
   sonar_init();  /* initialize the sonar function */ 
   printf(“press start\n”); 
   while(1) {   /* loop continually */ 
      if(start_button()) {  /* take num readings every time start is pushed */ 
         ticksAvg = 0; /* initialize to 0 */ 
         for(i=0; i<num;){ /* take num readings */ 
            ticks = sonar() / num; /* dividing before summing avoids overflow error*/ 
            if(ticks > 0) { /* discard negative values from sonar() */ 
     i += 1; 
    ticksAvg += ticks; /* sum ticks to get average */ 
            } 
         } 
         printf(“ticks = %d\n”,ticksAvg); /* print the result */ 
      } 
   } 
} 

6. Using the program in Figure 3 and a yardstick, determine the calibration coefficient for your CutieBot’s sonar 
that relates the number of ticks to a distance in centimeters. 

(a) Place the CutieBot on the floor and put the yardstick on the floor in orthogonal to the sonar sensor so that 
you can measure the distance from the sonar transducers to a point on the yardstick.   

Figure 3: Sample code needed to measure and average the time-of-flight data from the Devantech sonar. 



4 of 7 Revised 10/21/03 

(b) Place a large, flat object (such as a book) at several positions along the yardstick, run the program you 
loaded in step five, and record the distance and time-of-flight data in an Excel spreadsheet. 
 
Note: The wider the range of distances you measure coupled with the spacing between measurements will 
influence the accuracy of your calibration coefficient.  A distance of about 200 centimeters at 5 centimeter 
increments is recommended. 

(c) Plot these data in Excel or Matlab and determine a calibration coefficient that relates clock ticks with 
distance using linear regression (use an x-y chart with a trend line in EXCEL or the polyfit command in 
MATLAB).  

(d) Save your data and the linear regression results and record your calibration coefficient below: 
 
 
Calibration coefficient:      (cm/clock ticks) 

7. Modify your program to convert the average time-of-flight measurements into a distance in centimeters and 
display the final result on the LCD screen.  Use the following steps. 

(a) Modify the code of Figure 3 so that it is a subroutine of a different main program.  Refer to the sample code 
below for help. 

 
int yourname() {  /* “yourname()” is the name of the subroutine */ 
 num = 4;    /* set the number of readings to average */ 
 sonar_init();  /* initialize the sonar function */  
 ticksAvg = 0; /* initialize to 0 */ 
 for(i=0;i<num;){ /* take num readings */ 
  ticks = sonar() / num; /* dividing before summing avoids overflow error*/ 
  if(ticks > 0) { /* discard negative values from sonar() */ 
  i += 1; 
  ticksAvg += ticks; /* sum ticks to get average */ 
  } 
 } 
 return ticksAvg; /* specifies the returned variable*/ 
} 

(b) Write a new main function in the same C file that calls your subroutine, performs the conversion from 
clock ticks to centimeters, and displays the result as a floating point variable on the LCD screen.  The 
following code may be useful: 

 
float m, b, cm; 
int x; 
 
void main() { 
 printf(“press start\n”); 
 while(1) { 
  if(start_button()) { 
   m  = ##.##; /*Enter your calibration coefficient here*/ 
   b  = ##.##; /*Intercept from your regression*/ 
   x  = yourname(); /*Call the subroutine*/ 
   cm = ((float)x)*m + b; 
  } 
 printf(“Distance is %f cm\n”, cm); 
 } 
} 

Figure 4: Subroutine sample code. 

Figure 5: New main function that converts the number of clock ticks to a distance in centimeters. 



5 of 7 Revised 10/21/03 

Notice that this sample code allows you to take multiple measurements without restarting the Handy Board. 

(c) Save a copy of your code to use in your report. 

8. Using the program you just created and the set-up from step six, determine the maximum distance the sonar is 
capable of detecting accurately by placing an object with a large surface area at a distance away from the 
CutieBot and comparing the measurement from your program with the yardstick; keep increasing the distance 
between the two until the measurements from the CutieBot are unreasonable.  Record the distance below. 
 
Maximum Distance                      (cm) 

9. Determine the minimum distance the sensor is capable of measuring using a similar procedure; record the 
distance below. 
 

Minimum Distance:                      (cm) 

10. Determine the cone angle of the sonar sensor. 

(a) Place your CutieBot on the floor again and align the midline of the sonar with one of the seams of the tiles 
on the floor.   

(b) Place an object a known distance from the CutieBot and slide it orthogonal to the floor seam you’re using 
while you take distance measurements with the CutieBot.  Keep moving the object from the midline until 
the robot can no longer “see” the object. 

(c) Measure the distance between the closest point of the object and the midline with the yardstick and record 
the data in an Excel file. 

(d) Repeat steps ten (b) and (c) for both sides of the midline until you can create a series of points like Figure 4 
below (approximately nine to twelve points per side of the midline since the cone is not always 
symmetrical). 

 

Figure 6:  Measuring the cone angle of the SRF04 

(e) Plot the data you measured in Excel or Matlab with measurements from one half of the midline positive 
and the other negative.  Use linear regression to find the slope of the best-fit line for each half of the cone. 



6 of 7 Revised 10/21/03 

(f) Use trigonometry and the slopes calculated in the previous step to determine the cone angle of the sensor.  
Save your data and record the cone angle below.  
 
 
Cone Angle:    (degrees) 

11. Write a program that will make a CutieBot locate and approach an object subject to the following requirements: 

• The CutieBot must be placed with the sonar facing away from the object at a distance of approximately 
one-meter.   

• The CutieBot must scan the area for the object. 

• When the CutieBot has found the object, it must approach it and stop approximately 10-cm away from the 
object. 

As usual, there are many ways to accomplish this task.  Take into consideration the capabilities and limitations 
of the sonar you just calibrated.  Determining how you might program the CutieBot for this function before you 
come to lab is HIGHLY RECOMMENDED!  Carefully consider what you know about the sonar and make 
programming decisions that reflect your understanding.  Think about how the speed of the CutieBot will affect 
the accuracy of the sonar reading.  In addition, determine how the CutieBot should react if the object moves out 
of the cone angle of the sonar.   



7 of 7 Revised 10/21/03 

Questions: 
 
1. Based on your calibration coefficient, determine how far the ping travels in a single clock tick?  What is the 

actual processor frequency of the Handy Board of your CutieBot?  
 
Hint:  treat the clock tick as a period, T, where the frequency of the CPU, f, is f = 1 / T.  Note that the speed of 
sound in air is 343 m/s in air at 20° C. 
 
 
 
 
 
 
 

2. Can the sonar module determine the exact location of an object in a 2-D space?   
 
 
Can the sonar sensor determine the size of an object? 
 
 
How might you use the sensor to determine the size of an object? 
 
 
 
 
 
 

3. Based on your measurements, what are the specifications of the sonar you tested?   Compare your results with 
the data supplied by Acroname by following the “Sonar Data” link on the lab handout page of the class 
webpage.   List them in the space provided and discuss why there may be differences. 
 

 Max. Distance Min. Distance Cone Angle 

Your Measurements    

Acroname    

 

 

 

 

 

4. Can the sonar detect quickly moving objects?  Why or why not? 
 
 
 
 

5. Describe the strategy that you used to home in on the object with the CutieBot.  
 


