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The purpose of this exercise is to study the effects of a PID controller on a motor-load 
system.  Although not a second-order system, a PID controlled motor-load system can be 
approximated as such with good accuracy.  The motor-pendulum system will be 
examined, and the PID controller will be implemented using CVI Lab Windows. 
 
Pre-lab Exercise Derive the open-loop transfer function for the motor-load system from 
input voltage to angular position.  Neglect inductance effects.  Derive the closed-loop 
transfer function with controller transfer functions Gc(s) = Kp, Gc(s) = Kp + Kds, and 
Gc(s) = Kp + Kds + Ki /s.  
 
(Hint:  If you derive the transfer function with the last controller first, the other 
controllers can be realized easily by setting the appropriate control gains to zero.) 
 
Background In this experiment we will explore the time response characteristics of the 
motor-pendulum system in a closed loop configuration with various PID controller 
configurations.  The block diagram for the experiment is provided in Figure 1 below. 

 
Figure 1.  Feedback control loop for the PID experiment. 

In this figure, the reference R(s) is provided by CVI as a step of magnitude 1.5 volts from 
the 0.9 volt initial state.  The feedback gain H(s) converts angular position to a voltage 
signal using a potentiometer.  Its value is approximately 1 volt per radian.  This signal is 
fed to the DAQ terminal block.  CVI subtracts the signal from the reference to get the 
error e, which is then input to the compensator Gc(s).  The PID controller is then provided 
by the computer.  The compensator’s transfer function is given by: 
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You will be able to adjust the gains using CVI.  CVI then outputs a signal v to the bench 
power amplifier.  The bench power amplifier is denoted by Ga(s), and its low frequency 
gain is approximately 4.  It is assumed that the power amplifier is a zero-order system 
because its time constant is so fast, but it is really a first order system whose dynamics 
are dominated by the rest of the system.  The power amplifier sends the control signal u, 
which causes the motor to turn.  The angular position is denoted C(s).  This is converted 
to a voltage by a potentiometer, as noted before.  The piece missing from this puzzle is 
the transfer function of the motor-load system, or plant.  Here we revisit the motor 
characteristics exercise.  In the exercise, we learned that the motor-pendulum system has 
the characteristics shown in Figure 2 below. 
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Figure 2.  Motor-load system schematic. 

We learned that the inductance has a relatively fast time constant associated with it.  
Because of this, it lends little to the overall time response of the system and can thus be 
neglected.  The derivation of the transfer functions of the systems in Figures 1 and 2 are 
left to the students as the pre-lab exercise. 
 
Setup You will make a position control system using a motor driven pendulum, a 
potentiometer to measure angle, and a computer to provide the control.  Connect the 
bench power amplifier input “Vref” to analog output channel 0 (AO_CH0) and ground 
(AO_GND), and then connect the leads of the motor to the output of the bench power 
amplifier.  Connect the potentiometer pin 1 to +5 volts, pin 3 to ground, and the wiper 
(pin 2) to analog input channel 0 (AI_CH0).  Connect the power supply ground to 
AI_GND.   
 
Have your TA check your wiring before proceeding.  Start the PID program from the 
CVI folder on the desktop.  Ensure that the weights are adjusted so that the pendulum-
system is balanced about the motor shaft.  Using a voltmeter, adjust the pendulum such 
that pin 2 of the potentiometer measures 0.9 volts.   You must start at this position for 
each run to follow. 
 
(1) Effect of proportional gain Kp 

1. Turn the integral and differential gains to zero. 

2. Starting with a proportional gain of 0.2, give the system a step input by clicking on 
the “GO” button.   

3. Incrementally increase the proportional gain by 0.2 and repeatedly run the program 
until the system behaves oscillatory.  

4. Once the system becomes oscillatory, continue increasing the gain by increments of 
0.3, recording the time-to-peak Tp and the percent overshoot %OS.  Also record the 
settling time Ts, the rise time Tr, the peak output Cmax, the steady-state output Css, and 
the steady-state error ess.  Use a 2% settling time, and recall that rise time is 
commonly defined as the time it takes for the response to go from 10% to 90% of the 
final value.  Continue until the maximum gain is reached, repeating the measurements 
for each value of Kp.  Record your data in Table 1 below.   
 
(Note:  If more accuracy than measuring on the screen is desired, click the “Write to 
File” button to write the data to a DAT file.  The data is saved in three columns.  The 
first column is time, the second is the potentiometer signal, and the third column is 
the step input generated by CVI.) 
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Table 1.  Response characteristics for varying Kp.  Ki=Kd=0. 

Kp Tp Tr Ts Cmax Css %OS ess 
        

        

        

        

        

        

        

        

        

 

How does increasing the proportional gain affect system response?  What are the 
tradeoffs? 
 
 
 
 
 
 
  
 
 
5. Approximate the motor-load as a second-order system by accomplishing the 

following.  Calculate the natural frequency and damping ratio for each gain setting 
(recall the lab exercise on second-order systems).  This time, the system is not nearly 
as underdamped as the other was, so the damping ratio ζ should be calculated 
according to the following expression:  
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where %OS is the percent overshoot.  The time to peak Tp can be used to find the 
natural frequency ω n:  
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It would be wise to enter the numbers from the previous table into an Excel 
spreadsheet to help with these calculations. 
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6. Using your spreadsheet, calculate the real and imaginary parts of the dominant roots 
from natural frequency and damping ratio.  For a second-order system, the roots are 
located at the following coordinates: 

21  PartsImaginary   , Part  Real ζωζω −±=−= nn   (3) 
7. Plot these roots on the real and imaginary axes (on a separate page) and indicate the 

direction in which the roots move while KP increases.  What pattern emerges?   
 
 
 
 
 
 
 
 
(2) Effect of derivative gain Kd  
Set the proportional control to 1.5 and vary Kd. Measure the system response 
characteristics for each value of Kd and enter them into Table 2 below.  (Hint: You should 
choose Kd = 1 as one of your data points for later.) 

Table 2.  Response characteristics for varying Kd.  Kp=1.5.  Ki=0. 

Kd Tp Tr Ts Cmax Css %OS ess 
        

        

        

        

        

        

        

        

        

 
What effect does the derivative gain have on system response?  What are the tradeoffs? 
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(3) Effect of integral gain Ki  
Choose Kp = 1.5, Kd = 1.0, and set the integral control to 0.001.  Record the system 
response data below.  Incrementally increase the integral gain until the maximum is 
reached, recording your measurements as you go. 

Table 3.  Response characteristics for varying Ki.  Kp=1.5.  Kd=1.0. 

Ki Tp Tr Ts Cmax Css %OS ess 
0.001        

0.002        

0.003        

 
What happens as the integral gain is increased?    
 
 
 
 
 
 
 
 
 
(4) Find the transfer function experimentally  
With Kp = 1.5, Kd = 1.0, Ki = 0, find the transfer function of the closed loop system.  
Assume that a second order approximation is appropriate for the response. 
 
 
 
 
 
 
 
 
 
G(s) =     . 
 
(5) Higher order effects 
What higher order dynamic effects have been neglected in our analysis?  When would 
they need to be considered? 


