
 
 

ME 3210 Mechatronics II Laboratory 

Lab 7: PID Controllers 
Introduction 
The purpose of this exercise is to study the effects of a PID controller on a motor-load system.  Although not a 
second-order system, a PID controlled motor-load system can be approximated as such with good accuracy.  The 
motor-pendulum system will be examined, and the PID controller will be implemented using CVI Lab Windows. 
 
Background  
In this experiment we will explore the time response characteristics of the motor-pendulum system used in the motor 
characteristics lab in a closed loop configuration with various PID controller configurations.  The block diagram for 
the experimental system is provided in Figure 1 below. 

 
Figure 1:  Feedback control loop for the PID experiment. 

The reference, R(s), is provided by the DAQ as a step input of 1.5 volts from the 0.9-volt initial state.  The feedback 
gain, H(s), converts angular position, C(s), to a voltage signal using the setup’s potentiometer; approximately 1 volt 
per radian.  This signal is fed to the DAQ terminal block and the CVI program subtracts the feedback signal from 
the reference to determine the error, e, which is then fed into the PID controller, Gc(s).  Then, using the CVI 
program, the computer calculates the appropriate voltage output, v, using the following transfer function. 
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where Kp, Ki, and Kd are the proportional, integral, and derivative gains.  These gains can be adjusted using the CVI 
program used in this lab.  The controller signal, v, is fed into the bench power amplifier, Ga(s), whose low frequency 
gain is approximately 4.  We assume that the power amplifier is a zero-order system because its time constant is so 
fast, but it is really a first order system whose dynamics are dominated by the rest of the system.  The power 
amplifier sends the control signal u, to the plant, Gp(s), which causes the motor to turn and alter C(s).  This process 
is repeated until a steady-state value for C(s) is reached. 
 
The piece missing from the system of Figure 1is the transfer function of the motor-load system, or plant.  Here we 
revisit the motor characteristics exercise.  In the exercise, we learned that the motor-pendulum system has the 
characteristics shown in Figure 2 below. 

 
Figure 2:  Motor-load system schematic. 
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We learned that the inductance has a relatively fast time constant associated with it.  Because of this, it lends little to 
the overall time response of the system and can thus be neglected.  The derivation of the transfer functions of the 
systems in Figures 1 and 2 are left to the students as the pre-lab exercise. 
 

 
Figure 3: Second-order step response 

Second Order Response Characteristics 

Figure 3 shows a typical underdamped second-order response to a step input and some of the system response 
characteristics.  These response characteristics can be used to determine the damping ratio and natural frequency of 
the system.  These response characteristics and their definitions are summarized in the following table. 
 

Table 1: Second-order response characteristics. 

Name Symbol Definition 
Rise Time Tr Time required for the system response to initially rise from 10% to 90% of 

the steady-state value (measured in seconds). 
Time to Peak Tp Time required for the system to reach the peak system response, Cmax 

(measured in seconds). 
Settling Time Ts Time required for the output to settle to within 2% of the steady-state value 

(measured in seconds): see Figure 3. 
Steady-State Value Css The final value of the system response as time approaches infinity. 

Peak Response Cmax The maximum amplitude of the system. 
% Overshoot %OS 
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Steady-state Error ess The difference between the input and the steady-state value. 
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If the system is underdamped the damping ratio ζ may be calculated using the following expression:  
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The time to peak, Tp, can then be used to find the natural frequency ωn:  
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Pre-lab Exercise 
1. Derive the open-loop transfer function for the motor-load system from input voltage to angular position.  

Neglect inductance effects.   
 
2. Derive the closed-loop transfer function with the following controller transfer functions: 

 
● ,  
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(Hint:  If you derive the transfer function with the last controller first, the other controllers can be realized 
easily by setting the appropriate control gains to zero.) 
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Laboratory Exercise 
You will make a position control system using a motor driven pendulum, a potentiometer to measure angle, and a 
computer to provide the control.   
 

1. Connect the bench power amplifier input “Vref” to analog DACCOUT0 and connect the leads of the motor 
to the output of the bench power amplifier.   

 
2. Connect pin 1 of the potentiometer attached to the motor output to +5 volts, pin 3 to ground, and the wiper 

(pin 2) to ACH0. 
 

3. Connect the EXTREF port of the DAQ to the ground of the bench power supply; have your TA check your 
wiring before proceeding.   

 
4. Open the PID.exe program from the CVI folder on the desktop and ensure that the weights are adjusted so 

that the pendulum-system is balanced about the motor shaft.   
 

5. Using a voltmeter to measure the voltage between pin 2 of the potentiometer and ground, adjust the 
pendulum until the potentiometer measures 0.9 volts. 

 
6. You must start at this position after each time you run the CVI program. 

 
Effect of The Proportional Gain, Kp

7. Set the integral and differential gains to zero. 
 
8. Set the proportional gain to 0.2, and give the system a step input by clicking on the “GO” button. 

 
9. Incrementally increase the proportional gain by 0.2 and repeatedly run the program until the system 

response starts to respond like the exhibited in Figure 3 below. 
 

10. Save the data from the previous step with a meaningful filename corresponding to the value of Kp (for 
example if Kp = 1.2 the filename could be “Kp_1p2.dat” or “propor_1p2.dat”). 

 
11. Continue increasing Kp by increments of 0.3 for eight more data sets.  Save each data set and fill Table 2 

with the appropriate response characteristics corresponding to each value of Kp.   
 

Table 2:  Response characteristics for varying Kp with Ki = Kd = 0. 

Kp Tp Tr Ts Cmax Css %OS ess
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12. Create a spreadsheet of the data in Table 2 and calculate the natural frequency and damping ratio for each 
gain setting using Equations 2 and 3. 

 

13. Using your spreadsheet, calculate the real and imaginary parts of the dominant roots from natural frequency 
and damping ratio.  For a second-order system, the roots are located at the following coordinates: 

 2
1,2 1n ns ζω ω ζ= − ± −  (4) 

14. Plot these roots on the real and imaginary axes and indicate the direction in which the roots move while KP 
increases.  What pattern emerges?   
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Effect of The Derivative Gain, Kd  

15. Set the proportional control to 1.5 and vary Kd. Measure the system response characteristics for each value 
of Kd and enter them into Table 3 below.  (Hint: You should choose Kd = 1 as one of your data points for 
later.) 

Table 3:  Response characteristics for varying Kd with Kp=1.5 and Ki=0. 

Kd Tp Tr Ts Cmax Css %OS ess
        

        

        

        

        

        

        

        

        

 
Effect of integral gain Ki  

16. Set Kp = 1.5, Kd = 1.0, Ki = 0.001 and click “GO”.  Save the data as before and record the system response 
data in Table 4 below.   

17. Incrementally increase the integral gain until the maximum is reached, recording your measurements as you 
go. 

Table 4:  Response characteristics for varying Ki with Kp=1.5 and Kd=1.0. 

Ki Tp Tr Ts Cmax Css %OS ess
0.001        

0.002        

0.003        

 6 of 7 Revised: 3/24/2004 



 
 

Questions 
1. How does increasing the proportional gain affect system response?  What are the tradeoffs? 

 
 
 
 
 
 

 
2. What effect does the derivative gain have on system response?  What are the tradeoffs? 

 
 
 
 
 
 

 
3. What happens as the integral gain is increased? 

 
 
 
 
 
 
 

 
4. With Kp = 1.5, Kd = 1.0, Ki = 0, find the transfer function of the closed loop system.  Assume that a second 

order approximation is appropriate for the response. 
 
 
 
 
G(s) = 
 
 
 
 

 
5. What higher order dynamic effects have been neglected in our analysis?  When would they need to be 

considered? 
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