
ME 3210 Mechatronics II Laboratory 

Lab 6: Second-Order Dynamic Response 
Introduction 
Second order differential equations approximate the dynamic response of many systems.  In this lab you will model 
an aluminum bar as a second order mass-spring-damper system.  
 
Second-Order Systems 
This laboratory exercise focuses on a second-order mass-spring-damper system formed by a slender spring steel rod 
connected to a rotational inertia.  The spring steel rod acts as a torsion spring and provides stiffness to the system via 
its material properties (Young’s modulus); damping is provided by the air drag, and energy dissipation in the 
remainder of the system components.  The generalized characteristic equation that describes every second-order 
system is  

 , (1) 22 n ny y y fζω ω+ + = ( )t

where y is the system output, ζ is the dimensionless damping ratio or damping coefficient, ωn is the natural 
frequency in radians per second, and f(t) is some forcing function.  However, for this lab, the equation of motion that 
describes the mass-spring-damper system of the torsion spring is the following differential equation: 
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where θ is the angular position of the rotational inertia, b is the damping coefficient, k is the stiffness of the system, 
and J is the rotational inertia of the system.  The solution to Equation 2 is sometimes referred to as the free response 
of the system because the system response is not excited by an external force (f(t)=0).  There are three different 
solutions to the free response: underdamped, overdamped, and critically damped solutions.  Each depends on the 
value of ζ; if ζ < 1 then the system is underdamped.  For the case of the spring steel rod used in this lab, the 
damping forces that dissipate the vibrational energy of the system are small.  Therefore we assume that the system is 
underdamped.  The time response for a generalized underdamped system with non-zero initial conditions is shown 
below in Figure 1. 

 
Figure 1: Generalized free response of an underdamped second-order 

system to non-zero initial conditions. 
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Determining ωn and ζ Experimentally 

One method for experimentally determining the parameters in Equation 1 is to solve the differential equation and 
perform some mathematical manipulation to isolate equations for specific, measurable parameters.  Since the system 
is unforced, only the homogeneous solution is required.  The homogeneous solution to Equation (1) is summarized 
in Equations (3) through (5). 
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where θ0 is the initial angular displacement of the end of the steel rod and θ(t) is the angular displacement as a 
function of time.  This solution shows that a decaying exponential scales a sinusoidal oscillation, similar to the 
response in Figure 1.  The time it takes to reach the first peak can be found by taking the time derivative of θ(t) and 
setting the result equal to zero. 
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Since the exponential term theoretically never reaches zero, the time to the first peak can be determined through 
reduction using trigonometric identities and algebra.  This procedure yields the equation for the time to peak, tp, in 
terms of ωn and ζ. 
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The time to peak is measured in seconds.  If the system is sufficiently underdamped (ζ < 0.1), then the term under 
the radical in Equation (7) approaches unity.  Therefore we can estimate the natural frequency, ωn, using the 
following relationship. 

 n
pt
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When a system is this underdamped the system response decays very slowly and it often takes a long time before the 
oscillations settle to a final or steady-state value.  Generally, the settling time is defined as the time it takes for the 
system to enter a region around the system’s final value without leaving.  This bounded region is typically defined 
as a percentage of the steady-state value.  For this experiment, the settling time will be defined to be when the 
system response settles to within 2% of its steady-state value.  The settling time can be evaluated analytically as the 
time it takes the decaying exponential of Equation (3) to reach 0.02: 
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Solving Equation (9) for the settling time, ts, yields the following relationship. 
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So, now that we have expressions for the time to peak and the settling time, we can calculate ωn and ζ using 
Equations (8) and (10) by examining the system response and measuring ts and tp.  
 
Log Decrement Technique 

Another way to calculate ωn and ζ is to use the log decrement technique.  This technique is exploits the periodicity 
of Equation (3) to determine ωn and ζ.  The time between successive peaks in the free response of the system is 
determined by the period, td, of the cosine function in Equation 2: 
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The amplitude of the first peak, which occurs at tp, is defined as x1.  Substituting tp and x1 into Equation (3) yields 
the following equation: 

 ( )1 0 cosn pt
d px y e tζω ω φ−= − . (12) 

The equation expressing the amplitude of the next peak is: 
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Subsequent expressions for amplitude peaks follow this pattern according to the Equation below: 
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The ratio of the initial peak to each successive peak is defined by the following expression: 
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Taking the natural logarithm of both sides of Equation (15) and substituting Equations (5) and (11) in for ωd and td 
yields the following relationship: 
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Once again we assume that for small damping ratios the term in the radical approaches unity, resulting in the 
following equation: 
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This result shows that there is a linear relationship between n and δ(n) and that the damping ratio of the system 
contributes to the slope between the two.  Therefore, the damping ratio can be determined through linear regression 
given values for n and δ(n).  Once the damping ratio is determined through linear regression, the natural frequency, 
ωn, can then be determined using the following equation (combine Equations (5) and (11)): 
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Experimental Procedure
1. Locate a spring-mass setup. 
 
2. Connect the +12V port on the bench power supply to one of the lower two ports of the potentiometer and 

the -12V port to the other using banana cables. 
 

3. Using a BNC cable and a BNC to banana adaptor, connect the wiper of the potentiometer to ACH0 of the 
DAQ terminal block (make sure that the black lead connects is grounded). 

 
4. Using a BNC cable and a BNC to banana adaptor, connect the EXTREF to the ground of the bench power 

supply. 
 

5. Open the 2_channel_oscope.vi from the LabView folder on the desktop and start running the VI by clicking 
the run button (single arrow) in the toolbar at the top of the screen. 

 
6. Set the sampling rate and number of samples so that you will collect about five seconds of data, deflect the 

rotational inertia a small amount (θ0 < 40°), click the START button, and quickly release the end of the 
rotational inertia. 

 
7. Examine the plot of the data and repeat Step 6 until you capture enough data to capture the moment when a 

2% settling time is reached and you are satisfied with the response; save the data set with a .dat file 
extension to your disk. 

 
8. Open the time (first column) and voltage (second column) data using Matlab or Excel and plot the data. 

 
9. Calculate the natural frequency and damping ratio of the system response using Equations (8) and (10); 

record the values below: 
 
 
ζ = ___________________ ωn = ___________________ rad/s 
 
 
 
 

 
10. Determine ζ and ωn using the log decrement technique. 

 
 
ζ = ___________________ ωn = ___________________ rad/s 
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Questions 
 

1. Is a second-order approximation sufficient to model this system?  Why or why not? 
 
 
 
 
 
 
 

 
2. Compare the results from Steps 9 and 10.  In your opinion, which technique is more accurate?  Why? 

 
 
 
 
 
 
 
 
 
 
 

 
3. Determine the second-order pole locations for the system based on the results from either Step 9 or 10 

(whichever you said was most accurate). 
 
 
 
 
 
 
 
 
 
 

 
4. Briefly describe at least two other second-order systems. 
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