

Figure 1: Binary ladder used to convert digital signal to analog voltage. (note that the figure caption is below the figure.)

Bit	6	5	4	3	2	1	0	Vout [V]	
Resistance [k Ω]	1	2	3.9	8.2	16	33	62	theoretical	measured
Binary Number	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	-5.04	-5.08
	1	1	1	1	1	1	1	-10.00	-10
	0	0	0	0	0	0	1	-0.08	-0.081
	1	1	0	0	0	0	0	-7.56	-7.59
	1	1	1	0	0	0	0	-8.82	-8.9
	1	1	1	1	0	0	0	-9.45	-9.51
	1	1	1	1	1	0	0	-9.76	-9.82
	1	1	1	1	1	1	0	-9.92	-9.96
	0	1	1	1	1	1	1	-4.96	-4.99

Table 1: 7-bit Binary Ladder

(Note that the caption for the table is located above the table)

University of Utah Department of Mechanical Engineering

```
m=2.9966; L=.922; x=[.008 .038 .099 .16 .237 .313 .465 .618 .77 .922];
L=x(10);
T=[107.5 98.8 86.3 76.6 65.4 58.1 47 40.4 36.2 32.9];
Tb=121.8; Ta=25.1; thetab=Tb-Ta;
theta=T-Ta;
for i=1:10
  arg =m*(L-x(i));
  a(i)=sinh(arg)*theta(i)/thetab;
  b(i)=sinh(arg)*cosh(arg);
  c(i)=cosh(arg)*theta(i)/thetab;
  d(i)=sinh(arg)^2;
   e(i)=cosh(arg)^2;
end
den=sum(b)^2-sum(e)*sum(d);
A=(sum(a)*sum(b)-sum(c)*sum(d))/den
B=(sum(c)*sum(b)-sum(a)*sum(e))/den
% Now the variance can be solved
num=ones(1,10);
for i=1:10
  arg=m*(L-x(i));
  num(i)=(theta(i)/thetab-A*cosh(arg)-B*sinh(arg))^2;
end
S=sum(num)/8
```

(Any computer code should conclude the Appendix)