
Mechatronics II Laboratory  
EXPERIMENT #1:  FORCE AND TORQUE SENSORS 

DC Motor Characteristics Dynamometer, Part I 
 
Force Sensors 

Force and torque are not measured directly.  Typically, the deformation or strain of some 
material is what is measured, and then the force or torque is inferred from that measurement.  The 
deformation can be measured in many ways.  If the displacement is large, as with a spring, the 
displacement can be read directly on a scale or linear potentiometer.  If the displacement is smaller, 
an LVDT, encoder, or other sensitive displacement measuring transducer can be used.  If the 
deformation is very small, strain gages can be applied.  

In this laboratory experiment you will use strain gages to measure the strain of a cantilever 
beam that is undergoing transverse deflection as a result of force applied to tip of the beam.  Your 
main objective will be to calibrate the system as a force sensor.  The beam is clamped on one end, 
making it cantilevered, and strain gages are applied to this end in order to read the strain at this 
location.  You will deform the beam by placing known weights on the free end, thus deflecting the 
beam and creating strain.  The force exerted by the weights is proportional to the strain along the 
beam.  This strain will be measured using strain gauges in a Wheatstone bridge configuration.  You 
will calibrate the output of the strain gages as a function of the applied force.  From this calibration, 
the measurements taken from the strain gages can be converted via a least-squares-fit to a linear 
approximation of the applied force. 

Strain Gages 
  A bonded metal-foil strain gage is a variable resistor whose change in resistance is 
proportional to the strain in the beam upon which it is mounted.  It is important that the gage 
adheres well to the beam to obtain accurate results and that the grid from which the gage is 
constructed is properly aligned in the direction of the deformation.  A common force sensor utilizes 

four gages.  Two gages are mounted on the bottom of a beam, and two are mounted on the top.  
They are wired to form a Wheatstone bridge circuit as in Figure 1, which provides maximum 
sensitivity to the very slight changes in resistance.  The zero-adjust knob is a potentiometer whose 
task is to manually ensure that V1 and V2 are equal under no load conditions (balance the bridge).  

Figure 1. Force measurement circuit.
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Upon inspection of the rest of the Wheatstone bridge, it can be seen that each side is a voltage 
divider.  The voltage V1 can be determined using the voltage divider law as follows: 
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Similarly, the voltage V2 is 
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The difference between V2 and V1 gives a highly sensitive and accurate measurement of the strain 
experienced by the beam at the location of the strain gages.  The voltage that corresponds to this 
strain, Vε is simply stated:  
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It is assumed that the strain gages are all uniformly similar.  When the bridge is balanced 
and there is no load applied to the end of the beam, R1 = R2 = R3 = R4 = R.  When a load is applied to 
the beam in the –y direction, strain gages 1 and 3 experience tension when a force is applied, and 
gages 2 and 4 experience compression.  The resistance of any particular strain gage changes by an 
equal in magnitude value of ∆R as its surface area increases (+∆R, tension) or decreases (-∆R, 
compression), or ∆R1 = -∆R2 =∆R3 = -∆R4 = ∆R.  After the force is applied to the beam, equation (3) 
becomes 
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This shows a linear relationship between Vε and ∆R. 
 The op-amp circuit on the right of Figure 1 consists of two buffers to protect the gages and 
a low-pass filter.  The filter has two jobs: it subtracts V1 from V2 and then amplifies and removes 
noise from the difference.  The output voltage, Vout, is determined by the following relationship: 
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where ω is the frequency of the signal and ω0 is the cutoff frequency of the filter,
CR f

1
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responsible for removing noise produced by vibrations of the beam when the dynamometer is 
operating.  Assuming that frequency effects are small, Equation (3) reveals that this differential 
amplifier amplifies the signal coming from the Wheatstone bridge, Vε according to the relation: 
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Mechanical Strain 
Figure 2 shows the beam with the gages attached.  Note that gages 1 and 3 are mounted on 

the top of the beam, and that gages 2 and 4 are mounted on the bottom.  The dimensions of the 
beam are labeled as width b, thickness h, and length l.  A point force of magnitude F is applied to 
the free end of the beam in the –y direction.   

 

The strain gages are measuring strain, which is a mechanical parameter.  Mechanical strain 
ε is defined as the change in length ∆l per unit length l of a material under loading conditions.  In 
mathematical terms, this last statement is 
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Note that strain is a unitless quantity, but units such as in/in are commonly used.  Mechanical stress 
σ is defined as the amount of force per unit area experienced by the material at any given point 
within the material.  Note that the stress in a loaded material generally varies throughout the 
material.  Within a certain region, stress and strain are related through Hooke’s law for linear 
springs, where the spring constant is Young’s modulus, or the modulus of elasticity.  The 
relationship is as follows: 
 Eσ ε=  (8) 
The unit of Young’s modulus is the same as that for stress.  Stress can be determined in a material 
by using Euler’s beam equation 
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where M is the moment experienced at the point in question (M=Fl), c is the distance to the 
midline of the material (c=h/2), and I is the area moment of inertia, which can be determined by the 
following relation: 
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Upon substitution and reduction, the strain can be determined theoretically by the following 
equation: 
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Of all the parameters on the right-hand side of equation (10), only F is a variable.  This shows a 
linear relationship between the applied force and the resultant strain. 
 As discussed before, a strain gage is a variable resistor whose resistance changes as its 
surface area changes.  Its surface area changes as a result of the strain experienced by the material 
upon which it is mounted.  A parameter is defined for a strain gage relating its change in resistance 

Figure 2.  Cantilever beam with strain gages attached. 
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to the strain of the material upon which it is mounted.  This parameter is known as the Gage 
Factor (GF).  The gage factor takes into account the information known from equation (4) to 
determine the strain defined in equation (6) as follows: 
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In reality, the gage factor will be different for each strain gage, even those from the same batch.  A 
certain model of strain gage is assigned an average gage factor from tests performed by the 
manufacturer.  Since the manufacturer supplies an approximate value for the gage factor, and Vout 
and Vin can be measured directly, the strain can be determined as, 
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which in conjunction with equation (11) allows direct calculation of the force applied to the beam, 
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After initial setup of the apparatus, the only measured quantity is Vout.  While equation (14) is 
useful for confirming calibration of the apparatus, it is usually recognized as best practice to 
calibrate the system using a set of known weights, as you will in this lab.  This is due largely to 
uncertainty in the strain Gage Factor (GF) and apparatus configuration. 

Laboratory Exercise 
 This is the first of a two-part lab. You will use your results from the force measurement 
setup from this lab to later construct a dynamometer. If you are careful and take your time with this 
part of the lab then your next lab will go much more smoothly. Be sure to make note of the 
element values used in your circuit for the next lab.  Be sure also to bring your calibration 
constant with you next week and to use the same station, as each setup is slightly different.   

1) The strain gages will provide a very weak signal. You will want to boost this signal to 
obtain usable results. You will need to connect the bridge to the instrumentation amplifier 
shown in the right half of Figure 1. Additionally, you may need to apply one or two 
cascading amplifier stages after the stage shown below in order to boost the signal. Use a 
capacitor in the feedback path of your amplifier to filter the signal (recall the exercise on 
operational amplifiers).  Make note of the resistor and capacitor values you used for the 
next lab:  Rf =  ,   Ri =   ,  C =   .  

2) Use a voltmeter to measure the output voltage of the bridge for different masses placed on 
the end of the beam.  Use the zero-adjust knob to balance the bridge circuit.  If the output 
decreases with added load, swap the wires to V1 and V2.  Convert the mass to force.  Record 
several different readings for different applied masses in the table below. 
 

Force Voltage Force Voltage Force Voltage
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3) Use the grid provided below  to plot the data you just collected.  Using a straight-edge and 
your best judgment, draw a straight line through the data.  Determine the equation of the 
line and the calibration coefficient: 

 

4) Use the least squares method (also known as linear regression) to obtain the best first-order 
relationship between the data.  The slope of this line will be the calibration coefficient.  As 
you may recall, the least squares fit of two data sets to a line can be obtained by: 
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Calibration coefficient           
Compare with your results from step 3: 
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5) Use a plotting application, such as Excel or Matlab, to plot of the output voltage versus 
load.  Use the software to determine the equation for the best-fit line and write the 
calibration coefficient here:        (remember units!)     
Compare your results to those determined in steps 3 and 4. 

 

 

6) Based on your measurements of the beam, determine the torque calibration coefficient for 
the dynamometer based upon the calibration coefficient determined statistically in the 
previous steps:  (units!) 

 

 

 

 

 

7) Identify at least three potential sources of error in your torque calibration coefficient.   
(hint: think about the electronics as well as the physical apparatus.) 

 

 

 

 

 

 

 

 

 

8) Is a linear approximation sufficient to describe and predict the relationship between torque 
and output voltage?   Why, or why not? 

 

 

 

 

 

 

 


