The Handy Board Technical Reference

Fred G. Martin®
February 7, 1999

O WA NEARANEREANNE

The Handy Board is a hand-held, battery-powered microcontroller board ideal for personal and
educational robotics projects. Based on the Motorola 68HC11 microprocessor, the Handy Board
includes 32K of battery-backed static RAM, outputs for four DC motors, inputs for a variety of
sensors, and a 16x 2 character LCD screen. The Handy Board runs Interactive C, a cross-platform,
multi-tasking version of the C programming language.

The Handy Board is distributed under MIT’s free licensing policy, in which the design may be
licensed for for personal, educational, or commercia use with no charge.

*The Media Laboratory at the Massachusetts Ingtitute of Technology, 20 Ames Street Room E15-020, Cambridge,
MA 02139. E-mail: fredm@edi a. mt. edu. This document is Copyright © 1991-99 by Fred G. Martin. It
may be distributed freely in verbatim form provided that no fee is collected for its distribution (other than reasonable
reproduction and mailing costs) and this copyright notice is included. An dectronic version of this document and the
fredly distributabl e software described herein are available from the Handy Board home page on the World Wide Web at
http://el.ww. nmedi a. m t. edu/ proj ect s/ handy- boar d/ .

1

Contents

1 Specifications 1
2 Ports and Connectors 2
3 Quick Start 4
4 6811 Downloaders 5
A1 OVEIVIEW o e 5
4.2 Putting the Handy Board into Bootstrap DownloadMode 5
43 MSDOS 6
44 Windows3.1andWindows95 6
45 Macintosh e 6
46 UNiX . . . o 6

5 Interactive C 7
51 USINgIC 7
511 ICCommands 8

512 LineEditing 8

513 TheManFunction 8

52 AQuick CTutorial 9
5.3 DataTypes, Operations, and Expressons 10
531 VariableNames 10

532 DaaTypes. e 11

533 Loca andGloba Variables oL 11

534 CongtantS 12

535 Operaors 12

5.3.6 Assignment Operatorsand Expressions 13

5.3.7 Increment and Decrement Operators. 14

53.8 Precedenceand Order of Evaluation 14

54 Control Flow e 15
541 StatementsandBlocks.o 15

542 If-Else« 15

543 While 15

544 FOr. 15

545 Break 16

55 LCD ScreenPrinting 16
551 PrintingExampleso 16

552 FormattingCommand Summaryo 17

553 SpecialNotes 17

56 Arraysand Pointers 17
56.1 Declaringand Initializing Arrays o L 18

56.2 Passing ArraysasArguments 18

56.3 Declaring Pointer Variables 0oL 19

56.4 PassingPointersasArguments 19

57 Library Functions L 20
571 OutputControl L 20
572 Sensorinput 21
573 TimeCommands. 23
574 ToneFunctions 24
58 Multi-Tasking« . .. o 24
581 OVerview 24
582 CreatingNewProcesses 25
583 DestroyingProcesseso 26
584 ProcessManagement Commands L 26
585 ProcessManagement Library Functions L. 26
59 FoatingPointFunctions Lo 27
510 Memory AccessFunctions L oL 27
511 ErrorHandling 28
5111 Compile-TimeErrors 28
5112 Run-TimeErrors. e 28
512 Binary Programso e e 29
5121 TheBinary SourceFileo 29
5.12.2 Interrupt-DrivenBinary Programs 31
5123 TheBinary ObjectFile 35
5124 LoadinganICBFile. 35
5125 Passing Array PointerstoaBinary Program 35
513 ICFileFormatsand Management 36
5131 CPrograms 36
5132 ListFiles. 36
5133 Fileand FunctionManagement 36
514 ConfiguringIC L 37
Sensors and Motors 38
6.1 Connector Wiring Technique. 38
6.1.1 WireType e 38
6.1.2 Strippingand TinningWireEnds 39
6.1.3 InstallingHeat Shrink Tubing 39
6.1.4 SolderingtoMaleHeader Lo 40
6.1.5 ShrinkingtheTubing 41
6.2 MOOrs e 42
6.3 SENSOIS. e 42
6.3.1 BascSensor CONNector 42
6.32 SwitchSensor 43
6.3.3 Photocell Sensor 43
6.34 Infrared ReflectanceSensor oo 44

7 Battery Maintenance
7.1 Battery Charging
7.2 Adapter Specifications .

8 Part Listing

9 Schematic Drawings
9.1 CPUandMemory . . .
9.2 Motor Outputs
9.3 Digital Inputs
94 Anaoglnputs
9.5 Infrared Transmission .
9.6 PowerSupply
9.7 Infrared Reception . . .

9.8 Serid Interfaceand Battery Charger oo

10 Printed Circuit Board Layouts

10.1 Handy Board Component
10.2 Handy Board Solder Side
10.3 Handy Board Silkscreen

Side.

10.4 Interface/Charger Board ComponentSide
105 Interface/Charger Board Solder Side L.
10.6 Interface/Charger Board Silkscreen

11 Pin-Out Detail

12 Frequently Asked Questions

12.1 Hardware
12.1.1 Motor Voltage .
12.1.2 Digital Outputs

12.1.3 HighAdapterVoltage

12.2 Software
12.2.1 ICBFiles . ..
12.2.2 Power Glitch . .
12.2.3 | can't get any of

What iswrong?

13 Vendors
14 Handy Board Mailing List

15 Licensing

the downloaders to work on my fast Windows 95 machine.

46
46
46

a7

48
48
49
50
50
51
51
52
52

53
53

55
56
56
57

58

59
59
59
59
60
60
60
61

61

62

62

62

1 Specifications

The Handy Board features:

52—pin Motorola 6811 microprocessor with system clock at 2 MHz.

32K of battery-backed CMOS static RAM.

Two L293D chips capable of driving four DC motors.

16 x 2 character LCD screen.

Two user-programmabl e buttons, one knob, and piezo beeper.

Powered header inputs for 7 analog sensors and 9 digital sensors.

Internal 9.6v nicad battery with built-in recharging circuit.

Hardware 38 kHz oscillator and drivetransistor for IR output and on-board 38 kHz IR receiver.
8-pin powered connector to 6811 SPI circuit (1 Mbaud serial peripheral interface).

Expansion buswith chip selects allows easy expansion using inexpensivedigital 1/O latches.

Board size of 4.25 x 3.15 inches, designed for acommercial, high grade plastic enclosure which
holds battery pack beneath the board.

2 Ports and Connectors

(18) piezo
béeper

OFF
(1gv|\cl)l?(\:/ver (17) LCD screen
ON (16) SPI
expansion
(Zc)o%onrggtuc}re ' hpeader

15) charge I
3) 4 DC (|n)d|catog WA tr%f(‘r?ebgrt]fr%/e
motor outputs (19) power Q - connector
. CIand expansion
E ﬁeaiier
indicators (13) user
- I ~ knob
_ I——
DI o (12)anslog
expansion
POoeEmESby |
@ “%tart”(S) ‘Stopr ©) ‘
utton 0
" 9 d(l ital 7.analog (11)
(6) Iow battery |nputs inputs IR Input
indicator 10)
(7) power/ready IR g}ft ut
indicator indicator

Figure 1. Labelled Handy Board Diagram

Figure1, above, showsalabelled view of the Handy Board’ s ports, connectors, inputs, and outputs. In
the following, each of theseis briefly described.

1. Power Switch. The power switch is used to turn the Handy Board on and off. The Handy Board
retains the contents of its memory even when the board is switched off.

2. Computer Connector. ViathisRJ11 connector, the Handy Board attachesto adesktop computer
(using the separate I nterface/Charger Board).

3. 4 DC Motor Outputs and Indicators. The Handy Board's four motor outputs are located at
this single 12—pin connector. Each motor output consists of three pins; the motor connects to
the outer two pins and the center pinisnot used. Red and green LEDSs indicate motor direction.
From top to bottom, the motor outputs are numbered 0 to 3.

4. Start Button. The Start button is used to control the execution of Interactive C programs. Also,
its state may be read under user program control.

2

5. Stop Button. The Stop button is used to put the Handy Board into a special bootstrap download
mode. Also, its state may be read under user program control.

6. Low Battery Indicator. Thered Low Battery LED lightswhen for a brief interval each time the
Handy Board is switched on. If this LED is on steadily, it indicates that the battery islow and
that the CPU is halted.

7. Power/Ready Indicator. ThegreenPower/Ready LED lightswhen theHandy Boardisin normal
operation, and flashes when the Handy Board is transmitting serial data. If the board is powered
on and thisLED is off, then the Handy Board isin special bootstrap mode.

8. 9 Digital Inputs. The bank of digital input portsis here. From right to |eft, the digital inputs are
numbered 7 to 15.

9. 7 Analog Inputs. Thebank of analog input portsis here. From right to left, the analog inputs are
numbered O to 6.

10. IR Output and Indicator. Theinfrared output port is here. The red indicator LED lights when
the output is enabled.

11. IR Input Sensor. The dark green-colored infrared sensor is here.

12. Analog Expansion Header. The analog expansion header is a 1x4 connector row |ocated
above analog inputs 0 to 3.

13. User Knob. The user knob is a trimmer potentiometer whose value can be read under user
program control.

14. Battery Trickle-Charge Connector. The battery charge connector is a coaxial power jack to
accept a12 volt signal for trickle-charging the Handy Board'sinternal battery.

15. Charge Indicator. The yellow chargeindicator LED lights when the Handy Board is charging
viathe coaxial power jack.

16. SPI Expansion Header. The SPI expansion header is a 2x4 pin jack that allows connection
with the 6811’ sserial peripheral interface circuit. See the CPU and memory schematic diagram
for a pin-out of this connector.

17. LCD Screen. The Handy Board is provided with a 16x2 LCD screen which can display data
under user control.

18. Piezo Beeper. The Handy Board has a simple piezo beeper for generating tones under user
control.

19. Power Expansion Header. The power expansion header isa1x4 pinjack that providesaccess
to the unregulated motor power and ground signals.

3 Quick Start

Here are the steps to getting started with the Handy Board and Interactive C:

1.

Connect the Handy Board to the serial port of the host computer, using the separate Serial Interface
board. The Serial Interface board connects to the host computer using a standard modem cable;
the Handy Board connectsto the Serial Interface using a standard 4—wire telephone cable.

Put the Handy Board into bootstrap download mode, by holding down the Stop button while
turning on system power. The pair of LED’s by the two push buttons should light up, and then
turn off. When power ison and both of the LED’ sare off, the Handy Board isin downl oad mode.

Runtheappropriatedownloader for thehost computer platform, and download thefilepcode_hb. s19.

Turn the Handy Board off and then on, and the Interactive C welcome message should appear
on the Handy Board'sLCD screen.

Run Interactive C.

4 6811 Downloaders

There are two primary components to the Interactive C software system:

e The 6811 downloader program, which isused to load the runtime 6811 operating program on the
Handy Board. There are anumber of different 6811 downloadersfor each computer platform.

¢ TheInteractive C application, which isused to compile and download I C programsto the Handy
Board.

This software is available for a variety of computer platforms/operating systems, including MS-
DOS, Windows 3.1/Windows 95, Macintosh, and Unix. The remainder of this section explains the
choicesin the 6811 downloaders.

4.1 Overview

The 6811 downloaders are general purpose applications for downloading a Motorola hex file (also
caled an S19 record) into the Handy Board's memory. Each line hex file contains ASCII-encoded
binary data indicating what data isto be loaded where into the Handy Board’s memory.

For use with Interactive C, the program named “pcode_hb. s19” must be present in the Handy
Board. The task of the downloaders, then, is smply to initialize the Handy Board's memory with the
contents of thisfile.

An additional purpose of the downloaders is to program the 6811's “CONFIG” register. The
CONFIG register determines the nature of the 6811 memory map. For use with Interactive C, the
CONFIG register must be set to the value 0x0c, which allows the 6811 to access the Handy Board's
32K static RAM memory in its entirety. Some downloaders automatically program the CONFIG
register; others require a specia procedure to do so. Please note that programming of the CONFIG
register only needs to be done once to factory-fresh 6811's. It isthen set in firmware until deliberately
reprogrammed to a different value.

Another consideration related to downloadersisthe type of 6811 in use. The Handy Board can use
boththe“A” and “E” seriesof 6811. These two chip varietiesare quite similar, but not al downloaders
support the E series bootstrap sequence. (The E series chips have more flexibility on their Port A
input/output pins and can run at a higher clock speed.)

4.2 Putting the Handy Board into Bootstrap Download Mode

When using any of the downloaders, the Handy Board must first be put into its bootstrap download
mode. Thisis done by first turning the board off, and then turning it on while holding down the STOP
button (the button closer to the pair of LEDs to the right of the buttons). When the board isfirst turned
on, these two LEDs should light for about % of a second and then both should turn off. The Stop
button must be held down continuously during this sequence. When the board is powered on and both
of these LEDs are off, it isready for bootstrap download.

4.3 MS-DOS
Two downloadersare availablefor MS-DOS machines: dl, by Randy Sargent and dlm, by Fred Martin.

dl is compatible only with the A series of 6811, and automatically programs the CONFIG register.
Type“dl pcode_hb. s19” a the MS-DOS prompt.

dim is compatible with both the A and E series of 6811, but does not automatically program the
CONFIG register. Type “dl m pcode_hb. s19 -256" to download to an A series chip and
“dl m pcode_hb. s19 -512" to download to an E series chip.

Neither dl nor dim runs very well under Windows. It is generally necessary to run them from a
full-screen DOS shell to get them to work at all. Under Windows, hbdl is recommended instead.

4.4 Windows 3.1 and Windows 95

hbdl, by Vadim Gerasimov, is the recommended Windows 6811 downloader. hbdl features automatic
recognition of both A and E series 6811s and automatic programming of the CONFIG register.

To use hbdl, run the hbdl . exe application and select the “pcode_hb. s19” file for download.
Make sure the text box for the CONFIG register hasthe value“0c.”

45 Macintosh

There are two choices available for the Macintosh: Initialize Board, by Randy Sargent, and 6811
Downloader MCL, by Fred Martin.

Initialize Board features automatic programming of the CONFIG register, but only works with A
series6811’s. It comesin two versions, one using the modem port and one using the printer port.

In order to get Initialize Board to use the Handy Board's pcode_hb. s19 file, one must edit
its STR resources to name this file. Then using it is just a matter of double-clicking on the
application icon.

6811 Downloader MCL features automatic recognition of both A and E series 6811's. In order to
program the CONFIG register, one can select the Set Config. .. option from the HC11 menu.

6811 Downloader MCL is run by double-clicking on the application icon and typing the name
of the file to be downloaded into atext field. The S19 file to be downloaded must be located in
the same folder as the application.

Anearlier version of 6811 Downloader (notethe lack of the MCL suffix in the application name)
isno longer compatible with contemporary Macintosh designs.

4.6 Unix

The dl downloader, written by Randy Sargent, is available for a number of Unix platforms, including
DECstations, Linux, Sparc Solaris, Sparc Sun OS, SGI, HPUX, and RS6000.

This downloader only works with the A series of 6811, and supports automatic programming of
the CONFIG register.

5 Interactive C

Interactive C (I1C for short) is a C language consisting of a compiler (with interactive command-line
compilation and debugging) and a run-time machine language module. 1C implements a subset of
C including control structures (f or, whi l e, i f, el se), local and global variables, arrays, pointers,
16-bit and 32-hit integers, and 32-bit floating point numbers.

| C worksby compiling into pseudo-codefor acustom stack machine, rather than compiling directly
into native code for a particular processor. This pseudo-code (or p-code) is then interpreted by the
run-time machine language program. This unusua approach to compiler design allows|C to offer the
following design tradeoffs:

¢ Interpreted execution that alowsrun-time error checking and prevents crashing. For exam-
ple, IC does array bounds checking at run-timeto protect against programming errors.

e Ease of design. Writing a compiler for a stack machine is significantly easier than writing
one for a typical processor. Since IC’'s p-code is machine-independent, porting I1C to another
processor entails rewriting the p-code interpreter, rather than changing the compiler.

¢ Small object code. Stack machine code tendsto be smaller than a native code representation.

e Multi-tasking. Because the pseudo-codeisfully stack-based, a process sstate is defined solely
by its stack and its program counter. It isthus easy to task-switch ssimply by loading anew stack
pointer and program counter. Thistask-switching is handled by the run-time module, not by the
compiler.

Since IC's ultimate performance is limited by the fact that its output p-code is interpreted, these
advantages are taken at the expense of raw execution speed. Still, IC isno slouch.

|C was designed and implemented by Randy Sargent with the assistance of Fred Martin.
This manual covers the freeware distribution of 1C (version 2.8x).

5.1 UsingIC

When IC is booted, it immediately attempts to connect with the Handy Board, which should be turned
on and running the pcode_hb. s19 program.

After synchronizing with the Handy Board, |C compiles and downloads the default set of library
files, and then presents the user with the “C>" prompt. At this prompt, either an IC command or
C-anguage expression may be entered.

All C expressons must be ended with a semicolon. For example, to evaluate the arithmetic
expresson 1 + 2, type thefollowing:

C 1+ 2
(The underlined portion indicates user input.) When this expression istyped, it is compiled by |C and

then downloaded to the Handy Board for evaluation. The Handy Board then evaluates the compiled
form and returnsthe result, which is printed on the IC console.

7

To evaluate a series of expressions, create a C block by beginning with an open curly brace “{”
and ending with a close curly brace “} ”. The following example creates alocal variablei and prints
thesumi +7 to the Handy Board’s LCD screen:

C> {int i=3; printf("%l", i+7);}

5.1.1 IC Commands

| C responds to the following commands:

e Load file. The command | oad <filename> compiles and loads the named file. The Handy
Board must be attached for this to work. 1C looks first in the local directory and then in the IC
library path for files.

Several filesmay be loaded into IC at once, allowing programsto be defined in multiplefiles.

e Unload file. The command unl oad < filename > unloads the named file, and re-downloads
remaining files.

e List files, functions, or globals. The command |i st files displays the names of al
filespresently loaded into IC. Thecommand| i st functi ons displaysthe names of presently
defined C functions. Thecommand | i st gl obal s displaysthe namesof all currently defined
global variables.

e Kill all processes. Thecommandki | | _al | killsall currently running processes.
e Print process status. The command ps printsthe status of currently running processes.

e Help. The command hel p displaysahelp screen of 1C commands.

Quit. The command qui t exitsIC. Inthe MS-DOS version, CTRL-C can also be used.

5.1.2 Line Editing

IC has a built-in line editor and command history, allowing editing and re-use of previously typed
statements and commands. The mnemonics for these functions are based on standard Emacs control
key assignments.

To scan forward and backward in the command history, type CTRL-P or |1 | for backward, and

cTRL-N or |} | for forward.
Figure 2 shows the keystroke mappings understood by IC.
| C does parenthesi s-balance-highlighting as expressions are typed.

5.1.3 The Main Function

After functions have been downloaded to the Handy Board, they can be invoked from the IC prompt.
If one of the functionsis named nai n() , it will automatically be run when the Handy Board is reset.

To reset the Handy Board without running the mai n() function (for instance, when hooking the
board back to the computer), hold down the START button when turning on the Handy Board. The
board will reset without running mai n() .

Keystroke Function
CTRL-A beginning-of-line
CTRL-B backward-char
backward-char
CTRL-D delete-char
CTRL-E end-of-line
CTRL-F forward-char
forward-char
CTRL-K kill-line

Figure 2: 1C Command-Line Keystroke Mappings

5.2 A Quick C Tutorial

Most C programs consist of function definitions and data structures. Hereis asmple C program that
defines asingle function, called nai n.

voi d main()

printf("Hello, world!\n");

All functionsmust have areturn value; that is, the valuethat they return when they finish execution.
mai n hasareturnvaluetype of voi d, whichisthe“null” type. Other typesincludeintegers(i nt) and
floating point numbers (f | oat). This function declaration information must precede each function
definition.

Immediately following the function declaration is the function’s name (in this case, mai n). Next,
in parentheses, are any arguments (or inputs) to the function. mai n has none, but a empty set of
parenthesesis still required.

After the function arguments is an open curly-brace “{”. This signifies the start of the actual
function code. Curly-braces signify program blocks, or chunks of code.

Next comes a series of C statements. Statements demand that some action be taken. Our demon-
stration program has a single statement, a pri ntf (formatted print). This will print the message
“Hel 1 o, worl d!” totheLCD display. The\ n indicates end-of-line.

Thepri nt f statement endswithasemicolon(*;). All C statementsmust be ended by asemicolon.
Beginning C programmers commonly make the error of omitting the semicolon that is required at the
end of each statement.

The mai n function is ended by the close curly-brace*}”.

Let'slook at an another example to learn some more features of C. The following code defines the
function sguare, which returns the mathematical square of a number.

i nt square(int n)

return n * n;

Thefunctionisdeclared astypei nt , which meansthat it will return an integer value. Next comes
the function name squar e, followed by itsargument list in parenthesis. squar e has one argument, n,
which is an integer. Notice how declaring the type of the argument is done similarly to declaring the
type of the function.

When a function has arguments declared, those argument variables are valid within the “ scope” of
the function (i.e., they only have meaning within the function’s own code). Other functions may use
the same variable names independently.

The code for squar e is contained within the set of curly braces. In fact, it consists of a single
statement: ther et ur n statement. The r et ur n statement exits the function and returns the value of
the C expression that followsit (inthiscase“n * n”).

Expressions are evaluated according set of precendence rules depending on the various operations
within the expression. In this case, there is only one operation (multiplication), signified by the “*”,
SO precedenceis not an issue.

Let’slook at an example of afunction that performsa function call to the squar e program.
fl oat hypotenuse(int a, int b)

float h;
h = sqgrt((float)(square(a) + square(b)));

return h;

This code demonstrates several more features of C. First, notice that the floating point variable h
is defined at the beginning of the hypot enuse function. In general, whenever a new program block
(indicated by a set of curly braces) is begun, new local variables may be defined.

Thevalueof h is set to theresult of acall tothesqgrt function. It turnsout that sqrt isabuilt-in
function that takes a floating point number as its argument.

We want to use the squar e function we defined earlier, which returnsits result as an integer. But
the sqrt function requires a floating point argument. We get around this type incompatibility by
coercing the integer sum (square(a) + square(b)) intoafloat by preceding it with the desired
type, in parentheses. Thus, the integer sum is made into a floating point number and passed along to
sqrt.

The hypot enuse function finishes by returning the value of h.

This concludes the brief C tutorid.

5.3 Data Types, Operations, and Expressions

Variablesand constants are the basic data objectsin a C program. Declarationslist the variablesto be
used, state what type they are, and may set their initial value. Operators specify what isto be doneto
them. Expressions combine variablesand constants to create new val ues.

5.3.1 Variable Names

Variable names are case-sensitive. The underscore character is allowed and is often used to enhance
the readability of long variable names. C keywordslikei f, whi | e, etc. may not be used as variable
names.

10

Global variables and functions may not have the same name. In addition, local variables named
the same as functions prevent the use of that function within the scope of the local variable.

5.3.2 Data Types
| C supports the following data types:

16-bit Integers 16-bit integers are signified by the type indicator i nt . They are signed integers,
and may be valued from —32,768 to 32,767 decimal.

32-bit Integers 32-bit integers are signified by the type indicator | ong. They are signed integers,
and may be valued from —2,147,483,648 to +2,147,483,647 decimal.

32-bit Floating Point Numbers Floating point numbersaresignified by thetypeindicator f | oat .
They have approximately seven decimal digits of precision and are valued from about 10~ to 10%.

8-bit Characters Charactersarean 8-bit number signified by thetypeindicator char . A character’s
valuetypically represents a printable symbol using the standard ASCI| character code.
Arraysof characters (character strings) are supported, but individual characters are not.

5.3.3 Local and Global Variables

If avariableisdeclared within afunction, or as an argument to afunction, itsbinding islocal, meaning
that the variable has existence only that function definition.

If avariableis declared outside of afunction, it isaglobal variable. It is defined for all functions,
including functionsthat are defined in files other than the onein which the global variablewas declared.

Variable Initialization Local and global variables can beinitialized when they are declared. If no
initialization valueis given, the variableisinitialized to zero.

int foo()

int x; /* create | ocal variable x
with initial value 0O */
int y= 7, /* create local variable y
with initial value 7 */
}
float z=3.0; /* create global variable z

with initial value 3.0 */

Local variablesare initialized whenever the function containing them runs.
Global variables are initialized whenever a reset condition occurs. Reset conditions occur when:

1. New code is downloaded;
2. Thenmai n() procedureisrun;

3. System hardware reset occurs.

11

Persistent Global Variables A specia uninitialized form of global variable, called the* persistent”
type, has been implemented for IC. A persistent global is not initialized upon the conditions listed for
normal global variables.

To make a persistent global variable, prefix the type specifier with the key word per si st ent . For
example, the statement

persistent int i;

createsaglobal integer caledi . Theinitial valuefor apersistent variableis arbitrary; it dependson
the contents of RAM that were assigned to it. Initial valuesfor persistent variables cannot be specified
in their declaration statement.

Persistent variables keep their state when the Handy Board is turned off and on, when mai n is
run, and when system reset occurs. Persistent variables, in general, will lose their state when a new
program is downloaded. However, it is possible to prevent this from occurring. If persistent variables
are declared at the beginning of the code, before any function or non-persistent globals, they will be
re-assigned to the same location in memory when the code is re-compiled, and thus their values will
be preserved over multiple downloads.

If the program is divided into multiple files and it is desired to preserve the values of persistent
variables, then all of the persistent variables should be declared in one particular file and that file should
be placed first in the load ordering of thefiles.

Persistent variableswere created with two applicationsin mind:
e Calibration and configuration valuesthat do not need to bere-cal culated on every reset condition.

¢ Robot learning algorithmsthat might occur over a period when the robot is turned on and off.

5.3.4 Constants

Integers Integers may be defined in decimal integer format (e.g., 4053 or - 1), hexadecimal format
usingthe“0x” prefix (e.g., 0x1f f f), and anon-standard but useful binary format using the “Ob” prefix
(e.g.,0b1001001). Octal constants using the zero prefix are not supported.

Long Integers Long integer constants are created by appending the suffix “I ” or “L” (upper- or
lower-case alphabetic L) to a decimal integer. For example, OL is the long zero. Either the upper or
lower-case“L” may be used, but upper-caseisthe convention for readability.

Floating Point Numbers Floating point numbers may use exponential notation (e.g., “10e3” or
“10E3") or must contain the decimal period. For example, the floating point zero can be givenas*“0. ",
“0. 0", 0r “OEL", but not asjust “0”.

Characters and Character Strings Quoted charactersreturn their ASCII value (eg.,’ x*).
Character strings are defined with quotation marks, e.g., "This is a character string.".

5.3.5 Operators

Each of the data types has its own set of operators that determine which operations may be performed
on them.

12

Integers The following operations are supported on integers:

e Arithmetic. addition +, subtraction - , multiplication *, division/ .

e Comparison. greater-than >, less-than <, equality ==, greater-than-equal >=, less-than-equal
<=,

e Bitwise Arithmetic. bitwise-OR | , bitwise-AND &, bitwise-exclusive-OR ", bitwise-NOT ™ .

e Boolean Arithmetic. logical-OR| | , logical-AND &&, logical-NOT ! .

When a C statement uses aboolean value (for example, i f), it takes the integer zero as meaning
false, and any integer other than zero as meaning true. The boolean operators return zero for
false and one for true.

Boolean operators && and | | stop executing as soon as the truth of the final expression is
determined. For example, in the expression a && b, if a isfase, then b does not need to be
evaluated because the result must be false. The && operator “knowsthis’ and does not evaluate
b.

Long Integers A subset of the operationsimplemented for integers are implemented for long inte-
gers. arithmetic addition +, subtraction - , and multiplication*, and theinteger comparison operations.
Bitwise and boolean operations and division are not supported.

Floating Point Numbers |1C uses a package of public-domain floating point routines distributed
by Motorola. This package includes arithmetic, trigonometric, and logarithmic functions.
The following operations are supported on floating point numbers:

e Arithmetic. addition +, subtraction - , multiplication *, division/ .

e Comparison. greater-than >, less-than <, equality ==, greater-than-equal >=, less-than-equal
<=,

e Built-in Math Functions. A set of trigonometric, logarithmic, and exponential functionsis
supported, as discussed in Section 5.9 of this document.

Characters Charactersareonly alowed in character arrays. When acell of the array isreferenced,
it is automatically coerced into a integer representation for manipulation by the integer operations.
When avalueis stored into a character array, it is coerced from a standard 16-bit integer into an 8-bit
character (by truncating the upper eight bits).

5.3.6 Assignment Operators and Expressions
The basic assignment operator is=. The following statement adds 2 to the value of a.

a=a+ 2

The abbreviated form

13

a += 2;

could also be used to perform the same operation.

All of the following binary operators can be used in thisfashion:

+ - * / % << >> & . |

5.3.7 Increment and Decrement Operators

The increment operator “++" increments the named variable. For example, the statement “a++" is
equivalentto “a= a+1” or “a+= 1",
A statement that uses an increment operator has avalue. For example, the statement
a= 3;
printf("a=% a+1=%l\n", a, ++a);
will display thetext “a=3 a+1=4."
If theincrement operator comesafter the named variabl e, then theval ue of the statement iscal cul ated
after the increment occurs. So the statement
a= 3;
printf("a=% a+1=%\n", a, at++t);

would display “a=3 a+1=3" but would finish with a set to 4.
The decrement operator “- - 7 is used in the same fashion as the increment operator.

5.3.8 Precedence and Order of Evaluation

Thefollowingtablesummarizestherulesfor precedence and associativity for the C operators. Operators
listed earlier in the table have higher precedence; operators on the same line of the table have equal
precedence.

| Operator | Associativity |
O[] left to right
7 ++ -- - (type) right to left
* % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
= 1= left to right
& left to right
- left to right
| left to right
&& left to right
[] right to left
= += -=g¢lC right to left
, left to right

14

5.4 Control Flow

| C supportsmost of the standard C control structures. One notable exceptionisthecase and swi t ch
statement, which is not supported.

5.4.1 Statements and Blocks

A single C statement is ended by a semicolon. A series of statements may be grouped together into a
block using curly braces. Inside ablock, local variables may be defined.
There is never asemicolon after aright brace that ends a block.

5.4.2 If-Else

Thei f el se statement isused to make decisions. The syntax is:
i f (expression)
statement-1

el se
Statement-2

expressionis evaluated; if it is not equal to zero (e.g., logic true), then statement-1 is executed.
The el se clause is optional. If thei f part of the statement did not execute, and the el se is
present, then statement-2 executes.

5.4.3 While

The syntax of awhi | e loop isthe following:
whi | e (expression)
statement

whi | e begins by evaluating expression. If it isfalse, then statement is skipped. If itistrue, then
statement is evaluated. Then the expression is evaluated again, and the same check is performed. The
loop exits when expression becomes zero.

One can easily create an infiniteloop in C using thewhi | e statement:

while (1)
statement

544 For

The syntax of af or loop isthe following:

for (expr-1; expr-2; expr-3)
statement

Thisis equivalent to the following construct using whi | e:

15

expr-1;

while (expr-2) {
Statement
expr-3;

}

Typically, expr-1is an assignment, expr-2is arelational expression, and expr-3is an increment
or decrement of some manner. For example, the following code counts from 0 to 99, printing each
number along the way:

i nt
for (i=0; i < 100; i++)
printf("%l\n", i);

545 Break

Use of the br eak providesan early exit fromawhi | e or af or loop.

5.5 LCD Screen Printing

IC hasaversion of the C functionpri nt f for formatted printing to the LCD screen.

The syntax of pri ntf isthefollowing:

printf(format-string, [arg-1] , ..., [ag-N])
Thisisbest illustrated by some examples.

5.5.1 Printing Examples
Example 1: Printing a message. The following statement prints a text string to the screen.

printf("Hello, world!\n");

In thisexample, the format string isssmply printed to the screen.

The character “\ n” at the end of the string signifies end-of-line. When an end-of-line character is
printed, the LCD screen will be cleared when a subsequent character is printed. Thus, most pri nt f
statements are terminated by a\ n.

Example 2: Printing a number. Thefollowing statement printsthe value of the integer variable x
with a brief message.

printf("Value is %l\n", x);
The special form % is used to format the printing of an integer in decimal format.

Example 3: Printing a number in binary. The following statement prints the value of the integer
variablex as a binary number.

16

printf("Value is %\n", x);

The special form %b isused to format the printing of an integer in binary format. Only the low byte of
the number is printed.

Example 4: Printing a floating point number. The following statement prints the value of the
floating point variablen as a floating point number.

printf("VvValue is %\n", n);
The special form % is used to format the printing of floating point number.

Example 5: Printing two numbers in hexadecimal format.

printf("A=% B=%\n", a, Db);

The form % formats an integer to print in hexadecimal.

5.5.2 Formatting Command Summary

| Format Command | Data Type | Description |

% i nt decimal number

U i nt hexadecimal number

% i nt low byte as binary number
e i nt low byte as ASCII character
% f1 oat floating point number

s char array | char array (string)

5.5.3 Special Notes

e The final character position of the LCD screen is used as a system “heartbeat.” This character
continuously blinks back and forth when the board is operating properly. If the character stops
blinking, the Handy Board has crashed.

e Charactersthat would be printed beyond the final character position are truncated.
e Theprintf () command treats the two-line LCD screen asasingle longer line.

e Printing of long integersis not presently supported.

5.6 Arrays and Pointers

| C supports one-dimensional arrays of characters, integers, long integers, and floating-point numbers.
Pointersto data items and arrays are supported.

17

5.6.1 Declaring and Initializing Arrays
Arraysaredeclared using the square brackets. Thefollowingstatement declaresan array of tenintegers:

int foo[10];

Inthisarray, elementsare numbered from 0to 9. Elements are accessed by enclosing the index number
within square brackets. f oo[4] denotes the fifth element of the array f oo (since counting begins at
zero).

Arrays are initialized by default to contain all zero values, arrays may also be initialized at
declaration by specifying the array elements, separated by commas, within curly braces. Using this
syntax, the size of the array would not specified within the square braces; it is determined by the
number of elements givenin the declaration. For example,

int foo[]= {0, 4, 5, -8, 17, 301};

creates an array of six integers, with f oo[0] equalling O, f oo[1] equalling 4, etc.
Character arrays are typically text strings. There is a specia syntax for initializing arrays of
characters. The character values of the array are enclosed in quotation marks:

char string[]= "Hello there";

This form creates a character array called st ri ng with the ASCII values of the specified characters.
In addition, the character array isterminated by azero. Because of this zero-termination, the character
array can betreated asastring for purposesof printing (for example). Character arrayscan beinitialized
using thecurly braces syntax, but they will not be automatically null-terminated in that case. Ingeneral,
printing of character arrays that are not null-terminated will cause problems.

5.6.2 Passing Arrays as Arguments

When an array is passed to afunction as an argument, the array’ s pointer is actually passed, rather than
the elements of the array. If the function modifies the array values, the array will be modified, since
thereis only one copy of the array in memory.

In normal C, there are two ways of declaring an array argument: as an array or as a pointer. 1C
only allowsdeclaring array arguments as arrays.

As an example, the following function takes an index and an array, and returns the array element
specified by the index:

int retrieve_elenment(int index, int array[])

return array[index];

}

Notice the use of the square bracketsto declare the argument ar r ay as an array of integers.
When passing an array variableto afunction, use of the square bracketsis not needed:

{
int array[10];

retrieve_elenment (3, array);

}

18

5.6.3 Declaring Pointer Variables

Pointers can be passed to functions which then go on to modify the value of the variable being pointed
to. Thisis useful because the same function can be called to modify different variables, just by giving
it adifferent pointer.

Pointers are declared with the use of the asterisk (*). In the example

int *foo;
float *bar;

f oo isdeclared as a pointer to an integer, and bar isdeclared as apointer to afloating point number.

To make a pointer variable point at some other variable, the ampersand operator is used. The
ampersand operator returns the address of a variable’'s value; that is, the place in memory where the
variable'svalueis stored. Thus:

int *foo;
int x=5;

foo= &x;
makes the pointer f oo “point at” the value of x (which happensto be 5).
This pointer can now be used to retrieve the value of x using the asterisk operator. This processis

called de-referencing. The pointer, or referenceto avalue, is used to fetch the value being pointed at.
Thus:

int vy;
y= *foo0;

setsy equal to the value pointed at by f oo. Inthe previous example, f oo was set to point at x, which
had the value 5. Thus, the result of dereferencing f oo yields5, and y will be set to 5.

5.6.4 Passing Pointers as Arguments

Pointers can be passed to functions; then, functions can change the values of the variables that are
pointed at. Thisis termed call-by-reference; the reference, or pointer, to the variable is given to the
function that is being called. Thisisin contrast to call-by-value, the standard way that functions are
called, in which the value of avariableis given the to function being called.

The following example defines an aver age_sensor function which takes a port number and a
pointer to an integer variable. The function will average the sensor and store the result in the variable
pointed at by r esul t .

In the code, the function argument is specified as a pointer using the asterisk:

voi d average_sensor(int port, int *result)

int sunF O;
int i;

for (i= 0; i< 10; i++) sum += anal og(port);

*result= suni 10;

19

Noticethat the function itself isdeclared asavoi d. It does not need to return anything, because it
instead storesits answer in the pointer variablethat is passed to it.

The pointer variableisused in the last line of the function. In this statement, the answer sun 10 is
stored at the location pointed at by r esul t . Notice that the asterisk is used to get the location pointed
by resul t.

5.7 Library Functions

Library files provide standard C functions for interfacing with hardware on the Handy Board. These
functionsare written either in C or as assembly language drivers. Library files provide functionsto do
things like control motors, make tones, and input sensors values.

|C automatically loads the library file every time it is invoked. The name of the default library
fileisis contained as a resource within the IC application. On command-line versions of IC, this
resource may be modified by invoking “i ¢ - confi g”. On the Macintosh, the IC application has a
STRresource that defines the name of thelibrary file.

The Handy Board'sroot library fileisnamed | i b_hb. | i s.

5.7.1 Output Control

DC Motors DC motor ports are numbered from O to 3.

Motors may be set in a“forward” direction (corresponding to the green motor LED being lit) and
a“backward” direction (corresponding to the motor red LED being lit).

Thefunctionsf d(i nt n) andbk(int n) turn motor mon or off, respectively, at full power. The
functionof f (i nt m turns motor moff.

The power level of motors may also be controlled. Thisis done in software by a motor on and off
rapidly (a technique called pulse-width modulation. The motor (int m int p) function allows
control of a motor’s power level. Powers range from 100 (full on in the forward direction) to - 100
(full oninthe backward direction). The system software actually only controlsmotorsto seven degrees
of power, but argument bounds of —100 and + 100 are used.

void fd(int m
Turns motor mon in the forward direction. Example: f d(3) ;

voi d bk(int m
Turns motor mon in the backward direction. Example: bk(1) ;

void off(int m
Turns off motor m Example: of f (1) ;

void al | of f ()

voi d ao()
Turnsoff al motors. ao isashort formforal | of f .

20

void notor(int m int p)
Turnson motor mat power level p. Power levels range from 100 for full on forward to - 100 for
full on backward.

Servo Motor A library routine alows control of a single servo motor, using digital input 9, which
is actually the 6811's Port A bit 7 (PA7), a bidirectional control pin. Loading the servo library files
causes this pin to be employed as a digital output suitable for driving the control wire of the servo
motor.

The servo motor has a three-wire connection: power, ground, and control. These wires are often
color-codedred, black, and white, respectively. The control wireis connected to PA7; the ground wire,
to board ground; the power wire, to a+5 volt source. The Handy Board's regulated +5v supply may
be used, though this is not an ideal solution because it will tax the regulator. A better solution is a
separate battery with acommon ground to the Handy Board or atap at the 4+-6v position of the Handy
Board' s battery back.

The position of the servo motor shaft is controlled by arectangular waveform that is generated on
the PA7 pin. The duration of the positive pulse of the waveform determines the position of the shaft.
This pulse repests every 20 milliseconds.

The length of the pulse is set by the library function ser vo, or by functions calibrated to set the
position of the servo by angle.

void servo._on()
Enables PA7 servo output waveform.

voi d servo._on()
Disables PA7 servo output waveform.

int servo(int period)

Sets length of servo control pulse. Value is the time in half-microseconds of the positive portion
of arectangular wavethat is generated on the PA7 pin for use in controlling a servo motor. Minimum
allowablevalueis 1400 (i.e., 700 psec); maximum is 4860.

Function return value is actual period set by driver software.

int servorad(float angle)
Sets servo anglein radians.

int servo.deg(float angle)
Sets servo anglein degrees.
In order to use the servo motor functions, thefilesser vo. i cb and ser vo. ¢ must be loaded.

5.7.2 Sensor Input

int digital (int p)
Returns the value of the sensor in sensor port p, as atrue/false value (1 for true and O for false).

21

Sensors are expected to be active low, meaning that they are valued at zero voltsin the active, or
true, state. Thusthelibrary function returnstheinverse of the actual reading from the digital hardware:
if thereading is zero voltsor logic zero, thedi gi t al () function will return true.

If thedi gi tal () functionis applied to port that isimplemented in hardware as an analog input,
the result is true if the analog measurement is less than 127, and falseif the reading is greater than or
equal to 127.

Ports are numbered as marked on the Handy Board.

i nt anal og(int p)
Returns value of sensor port numbered p. Result isinteger between 0 and 255.
If the anal og() function is applied to a port that is implemented digitally in hardware, then the
valueOisreturned if the digital reading is O, and the value 255 isreturned if the digital readingis 1.
Ports are numbered as marked on the Handy Board.

User Buttons and Knob The Handy Board has two buttons and a knob whose value can be read
by user programs.

int stop_button()
Returns value of button labelled Stop: 1 if pressed and O if released.
Example:

/* wait until stop button pressed */
while (!stop_button()) {}

int start _button()
Returns value of button labelled START.

voi d stop_press()
Waitsfor Stop button to be pressed, then released. Then issues a short beep and returns.
The code for st op_pr ess isasfollows:

while (!stop_button());
while (stop_button());
beep();

voi d start press()
Likest op_pr ess, but for the START button.

i nt knob()
Returns the position of aknob as avaluefrom O to 255.

22

Infrared Subsystem TheHandy Board providesan on-boardinfrared receiver (the Sharp 1 S1U60),
for infrared input, and a 40 kHz modulation and power drive circuit, for infrared output. The output
circuit requires an external infrared LED.

As of thiswriting, only the infrared receive function is officially supported. On the Handy Board
web site, contributed software to extend the infrared functionality is available.

To use the infrared reception function, the file sony-i r. i cb must be loaded into Interactive C.
This file may be added to the Handy Board default library file, | i b_hb. | i s. Please make sure that
thefiler22.ir.lis isnotpresentinthel i b_hb.lis file

The sony-ir.icb file adds the capability of receiving infrared codes transmitted by a Sony
remote, or a universal remote programmed to transmit Sony infrared codes.

int sonyinit(1)
Enablesthe infrared driver.

int sony.nit(0)
Disablestheinfrared driver.

int ir_data(int dumry)

Returns the data byte last received by the driver, or zero if no data has been received since the last
call. A value must be provided for the dumry argument, but its valueisignored.

Theinfrared sensor is the dark green component in the Handy Board'slower right hand corner.

5.7.3 Time Commands

System code keeps track of time passage in milliseconds. The time variables are implemented using
thelong integer data type. Standard functions allow use floating point variableswhen using the timing
functions.

voi d reset systemtinme()
Resets the count of system time to zero milliseconds.

| ong nseconds()

Returns the count of system time in milliseconds. Time count is reset by hardware reset (i.e.,
turning the board off and on) or the functionr eset _syst emti ne(). nseconds() isimplemented
as aC primitive(not as alibrary function).

fl oat seconds()
Returns the count of system time in seconds, as a floating point number. Resolution is one
millisecond.

voi d sl eep(float sec)
Waits for an amount of time equal to or dightly greater than sec seconds. sec isafloating point

number.
Example:

23

/* wait for 1.5 seconds */
sl eep(1.5);

voi d nsl eep(l ong nsec)
EV)\(/aitsflor an amount of time equal to or greater than nsec milliseconds. nsec isalong integer.
ample:

/* wait for 1.5 seconds */
nsl eep(1500L) ;

5.7.4 Tone Functions

Several commands are provided for producing tones on the standard beeper.

voi d beep()
Produces a tone of 500 Hertz for a period of 0.3 seconds.

voi d tone(fl oat frequency, float |ength)
Produces a tone at pitch f r equency Hertz for | engt h seconds. Both f r equency and | engt h
arefloats.

voi d set beeper pitch(float frequency)
Setsthe beeper toneto bef r equency Hz. The subsequent function isthen used to turn the beeper
on.

voi d beeper on()
Turnson the beeper at last frequency selected by the former function.

voi d beeper of f ()
Turns of f the beeper.

5.8 Multi-Tasking
5.8.1 Overview

One of the most powerful features of 1C is its multi-tasking facility. Processes can be created and
destroyed dynamically during run-time.

Any C function can be spawned as a separate task. Multiple tasks running the same code, but with
their own local variables, can be created.

Processes communicate through global variables: one process can set a global to some value, and
another process can read the value of that global.

Each time a process runs, it executes for a certain number of ticks, defined in milliseconds. This
value is determined for each process at the time it is created. The default number of ticks is five;
therefore, adefault process will run for 5 milliseconds until its “turn” ends and the next processis run.
All processes are kept track of in a process table; each time through the table, each process runs once
(for an amount of time equal to its number of ticks).

24

Each process has its own program stack. The stack is used to pass arguments for function calls,
storelocal variables, and store return addresses from function calls. The size of this stack isdefined at
thetime a processis created. The default size of aprocess stack is 256 bytes.

Processes that make extensive use of recursion or use large local arrays will probably require a
stack size larger than the default. Each function call requires two stack bytes (for the return address)
plus the number of argument bytes; if the function that is called creates local variables, then they also
use up stack space. In addition, C expressions create intermediate valuesthat are stored on the stack.

It is up to the programmer to determine if a particular process requires a stack size larger than the
default. A process may also be created with astack size smaller than the default, in order to save stack
memory space, if it is known that the process will not require the full default amount.

When aprocessiscreated, it isassigned aunique processidentification number or pid. Thisnumber
can be used to kill a process.

5.8.2 Creating New Processes

The function to create a new process is start _process. start _process takes one mandatory
argument—thefunction call to be started asa process. There aretwo optional arguments. the process's
number of ticks and stack size. (If only one optional argument is given, it is assumed to be the ticks
number, and the default stack sizeisused.)

start _process hasthefollowing syntax:

int start _process(function-cal(...), [TICKS , [STACK-SIZE])

start _process returnsan integer, which isthe process ID assigned to the new process.
Thefunction call may beany valid call of thefunction used. The following code showsthe function
mai n creating a process:

voi d check_sensor (int n)
while (1)
printf("Sensor % is %\n", n, digital(n));
voi d main()

start_process(check_sensor(2));

Normally when a C functions ends, it exits with areturn value or the “void” value. If afunction
invoked as aprocess ends, it “dies,” letting its return value (if there was one) disappear. (Thisis okay,
because processes communicate results by storing them in globals, not by returning them as return
values.) Hence in the above example, thecheck_sensor function is defined as an infiniteloop, so as
to run forever (until the board isreset or aki | | _pr ocess is executed).

Creating a process with anon-default number of ticks or a non-default stack sizeis ssimply a matter
of usingst art _pr ocess with optional arguments; e.g.

start _process(check_sensor(2), 1, 50);

will cresteacheck_sensor processthat runsfor 1 milliseconds per invocation and has a stack size of
50 bytes (for the given definition of check _sensor, asmall stack space would be sufficient).

25

5.8.3 Destroying Processes

Theki | | _process function is used to destroy processes. Processes are destroyed by passing their
process ID number to ki | | _pr ocess, according to the following syntax:

int Kill _process(int pid)

kil | _process returnsavaueindicating if the operation was successful. If the return valueis 0, then
the process was destroyed. If thereturn valueis 1, then the process was not found.

Thefollowing code showsthemai n processcreatingacheck_sensor process, and then destroying
it one second later:

voi d main()
int pid,

pi d= start_process(check_sensor(2));
sl eep(1.0);
kill _process(pid);

}

5.8.4 Process Management Commands

|C has two commands to help with process management. The commands only work when used at the
|C command line. They are not C functionsthat can be used in code.

kill all
killsall currently running processes.

ps
printsout alist of the process status.
The following information is presented: process ID, status code, program counter, stack pointer,
stack pointer origin, number of ticks, and name of function that is currently executing.

5.8.5 Process Management Library Functions

The following functions are implemented in the standard C library.

voi d hog_processor ()

Allocates an additional 256 milliseconds of execution to the currently running process. If this
functionis called repeatedly, the system will wedge and only execute the process that is calling hog -
processor (). Only asystem reset will unwedgefromthisstate. Needlessto say, thisfunction should
be used with extreme care, and should not be placed in a loop, unless wedging the machine is the
desired outcome.

voi d defer()

Makes a process swap out immediately after the function is called. Useful if a process knows that
it will not need to do any work until the next time around the scheduler loop. def er () isimplemented
asaC built-in function.

26

5.9 Floating Point Functions

In addition to basic floating point arithmetic (addition, subtraction, multiplication, and divison) and
floating point comparisons, a number of exponential and transcendental functions are built in to IC.
These are implemented with a public domain library of routines provided by Motorola.

Keepinmind that all floating point operations are quite slow; each takes one to several milliseconds
to complete. If Interactive C's speed seems to be poor, extensive use of floating point operationsis a
likely cause.

float sin(float angle)
Returnssine of angl e. Angleis specified in radians; result isin radians.

float cos(float angle)
Returns cosine of angl e. Angleis specified in radians; result isin radians.

float tan(float angle)
Returnstangent of angl e. Angleis specified in radians; result isin radians.

float atan(float angle)
Returns arc tangent of angl e. Angleis specified in radians; result isin radians.

float sqgrt(float num
Returns square root of num

float |o0glO(float nun
Returnslogarithm of numto the base 10.

float |og(float nun
Returns natural logarithm of num

float explO(float nun
Returns 10 to the numpower.

float exp(float nun
Returns e to the numpower.

(float) a = (float) b
Returnsa to theb power.

5.10 Memory Access Functions

|C has primitivesfor directly examining and modifying memory contents. These should be used with
careasit would be easy to corrupt memory and crash the system using these functions.

There should belittle need to use these functions. Most interaction with system memory should be
donewith arrays and/or globals.

27

i nt peek(int |oc)
Returns the byte located at address| oc.

i nt peekword(int |oc)
Returns the 16-bit value located at address| oc and | oc+1. | oc has the most significant byte, as
per the 6811 16-bit addressing standard.

voi d poke(int loc, int byte)
Storesthe 8-bit value byt e at memory address| oc.

voi d pokeword(int |oc, int word)
Storesthe 16-bit valuewor d at memory addresses| oc and | oc+1.

void bit_set(int loc, int mask)
Setsbitsthat are set in mask at memory address| oc.

void bit _clear(int loc, int mask)
Clearsbitsthat are set in mask at memory address| oc.

5.11 Error Handling

There are two types of errorsthat can happen when working with 1C: compile-time errorsand run-time
errors.

Compile-timeerrorsoccur during the compilation of the sourcefile. They areindicativeof mistakes
inthe C source code. Typical compile-timeerrorsresult from incorrect syntax or mis-matching of data
types.

Run-time errors occur while a program is running on the board. They indicate problems with a
valid C form when it isrunning. A simple examplewould be adivide-by-zero error. Another example
might be running out of stack space, if arecursive procedure goes too deep in recursion.

These types of errors are handled differently, asis explained bel ow.

5.11.1 Compile-Time Errors
When compiler errors occur, an error message is printed to the screen. All compile-time errors must
be fixed before a file can be downloaded to the board.

5.11.2 Run-Time Errors

When a run-time error occurs, an error message is displayed on the LCD screen indicating the error
number. If the board is hooked up to |Cwhen the error occurs, amore verbose error message is printed
on the terminal.

Hereisalist of the run-time error codes:

28

| Error Code | Description

1 no stack space for st art _process()

2 Nno process dots remaining

3 array reference out of bounds

4 stack overflow error in running process

5 operation with invalid pointer

6 floating point underflow

7 floating point overflow

8 floating point divide-by-zero

9 number too small or large to convert to integer
10 tried to take square root of negative number
11 tangent of 90 degrees attempted

12 log or In of negative number or zero

15 floating point format error in printf

16 integer divide-by-zero

5.12 Binary Programs

Withthe use of acustomized 6811 assembler program, | C allowsthe use of machinelanguage programs
within the C environment. There are two ways that machine language programs may be incorporated:

1. Programsmay be called from C asif they were C functions.

2. Programs may install themselves into the interrupt structure of the 6811, running repetitiousy
or when invoked due to a hardware or software interrupt.

When operating as a function, the interface between C and a binary program is limited: a binary
program must be given one integer as an argument, and will return an integer as its return value.
However, programs in a binary file can declare any number of global integer variables in the C
environment. Also, the binary program can use its argument as a pointer to a C data structure.

5.12.1 The Binary Source File

Specia keywordsin the source assembly language file (or module) are used to establish the following
features of the binary program:

Entry point. The entry point for callsto each program defined in the binary file.

Initialization entry point. Each file may have one routine that is called automatically upon a reset
condition. (The reset conditions are explained in Section 5.3.3, which discusses global variable
initialization.) Thisinitiaization routine particularly useful for programswhich will function as
interrupt routines.

C variable definitions. Anynumber of two-byteCinteger variablesmay bedeclared withinabinary
file. When the moduleisloaded into I1C, these variables become defined as globalsin C.

29

[* Sanmple icb file */

/* origin for nodul e and variables */
ORG MAI N_START

/[* programto return twice the argunent passed to us */
subrouti ne_doubl e:

ASLD

RTS

/* declaration for the variable "foo" */
vari abl e _foo:
FDB 55

/* programto set the C variable "foo" */
subrouti ne_set _foo:

STD vari abl e_f oo

RTS

/* programto retrieve the variable "foo" */
subrouti ne_get foo:

LDD vari abl e_f oo

RTS

/* code that runs on reset conditions */
subroutine_initialize_nodul e:

LDD #69
STD vari abl e_f oo
RTS

Figure 3: SampleIC Binary SourceFile: t esti cb. asm

To explain how these features work, let's look at a sample IC binary source program, listed in
Figure 3.

Thefirst statement of thefile (*ORG MAI NLSTART”) declares the start of the binary programs. This
line must precede the code itself itself.

The entry point for a program to be called from C is declared with a special form beginning with
thetext subr out i ne_. Inthiscase, the name of the binary programis doubl e, so the label is named
subr out i ne_doubl e. Asthe comment indicates, thisis a program that will double the value of the
argument passed to it.

When the binary program is called from C, it is passed one integer argument. This argument is
placed in the 6811's D register (also known as the “Double Accumulator”) before the binary code is
caled.

The doubl e program doubles the number in the D register. The ASLD instruction (“Arithmetic
Shift Left Double [Accumulator]”) isequivalent to multiplying by 2; hence this doubles the number in
the D register.

The RTS instruction is “Return from Subroutine.” All binary programs must exit using this
instruction. When abinary program exits, the valuein the D register isthe return valueto C. Thus, the
doubl e program doublesits C argument and returnsit to C.

30

Declaring Variables in Binary Files Thelabel vari abl e_f oo isan example of aspecia form
to declarethe name and | ocation of avariableaccessable from C. The special |abel prefix “vari abl e_”
is followed the name of the variable, in this case, “f 0o.”

Thislabel must be immediately followed by the statement FDB <nunber >. Thisisan assembler
directivethat creates atwo-byte value (whichistheinitial value of the variable).

Variablesused by binary programs must be declared in the binary file. These variablesthen become
C globaswhen the binary file isloaded into C.

The next binary programinthefileisnamed “set _f 00.” It performsthe action of setting the value
of the variable f oo, which is defined later in the file. It does this by storing the D register into the
memory contents reserved for f oo, and then returning.

The next binary program is named “get _f 0oo.” It loads the D register from the memory reserved
for f oo and then returns.

Declaring an Initialization Program Thelabel subrouti ne_i nitial i ze_nodul e isaspecia
form used to indicate the entry point for code that should be run to initialize the binary programs.
This code is run upon standard reset conditions: program download, hardware reset, or running of the
mai n() function.

In the example shown, the initialization code stores the value 69 into the location reserved for the
variablef oo. Thisthen overwritesthe 55 which would otherwise be the default valuefor that variable.

Initialization of globals variables defined in an binary module is done differently than globals
definedin C. In abinary module, the globals are initialized to the value declared by the FDB statement
only when the code is downloaded to the 6811 board (not upon reset or running of main, like normal
globals).

However, theinitialization routineisrun upon standard reset conditions, and can beused toinitialize
globals, as thisexample hasillustrated.

5.12.2 Interrupt-Driven Binary Programs

Interrupt-driven binary programs use the initialization sequence of the binary moduleto install a piece
of codeinto the interrupt structure of the 6811.

The 6811 has a number of different interrupts, mostly dealing with its on-chip hardware such as
timersand counters. One of these interruptsisused by the runtime software to implement time-keeping
and other periodic functions (such as LCD screen management). This interrupt, dubbed the “ System
Interrupt,” runs at 1000 Hertz.

Instead of using another 6811 interrupt to run user binary programs, additional programs (that need
torun at 1000 Hz. or less) may install themselvesinto the System Interrupt. User programs would be
then become part of the 1000 Hz interrupt sequence.

Thisisaccomplished by having the user program “intercept” the original 6811 interrupt vector that
pointsto runtime interrupt code. Thisvector is made to point at the user program. When user program
finishes, it jJumpsto the start of the runtimeinterrupt code.

Figure 4 depicts the interrupt structure before user program installation. The 6811 vector location
pointsto system software code, which terminatesin a“return from interrupt” instruction.

Figure5illustrates the result after the user programisinstalled. The 6811 vector pointsto the user
program, which exits by jumping to the system software driver. This driver exits as before, with the
RTI instruction.

31

Before User Program Installation

| i |
IC system _—

software -
interrupt driver

6811 interrupt vector
(dedicated RAM position)

!

RTI |

Return from Interrupt |
instruction

Figure4: Interrupt Structure Before User Program Installation

Multiple user programs could be installed in this fashion. Each one would install itself ahead of
the previousone. Some standard library functions, such as the shaft encoder software, isimplemented
in thisfashion.

Figure 6 shows an example program that installs itself into the System Interrupt. This program
togglesthe signal line controlling the piezo beeper every timeit is run; since the System Interrupt runs
at 1000 Hz., this program will create a continous tone of 500 Hz.

Thefirst line after the comment header includes afilenamed “6811r egs. asni. Thisfile contains
equates for all 6811 registers and interrupt vectors, most binary programs will need at least a few of
these. It issimplest to keep them al in onefile that can be easily included.

The subroutine_initialize_nodul e declaration begins the initialization portion of the pro-
gram. Thefile“l dxi base. asnf isthen included. This file contains a few lines of 6811 assembler
code that perform the function of determining the base pointer to the 6811 interrupt vector area, and
loading this pointer into the 6811 X register.

Thefollowingfour linesof codeinstall theinterrupt program (beginningwiththelabel i nt er r upt _-
code_st ar t) according to the method that was illustrated in Figure 5.

First, the existing interrupt pointer is fetched. As indicated by the comment, the 6811's TOC4
timer is used to implement the System Interrupt. The vector is poked into the IMP instruction that will
conclude the interrupt code itself.

Next, the 6811 interrupt pointer is replaced with a pointer to the new code. These two steps
completethe initialization sequence.

The actua interrupt code is quite short. It toggles bit 3 of the 6811's PORTA register. The PORTA
register controls the eight pins of Port A that connect to external hardware; bit 3 is connected to the
piezo beeper.

The interrupt code exits with a jump instruction. The argument for this jump is poked in by the

32

After User Program Installation

|

6811 interrupt vector |
(dedicated RAM position)

User assembly
language program

Jump instruction | JVP & |

IC system
software
interrupt driver

!

RTI |

Return from Interrupt |
instruction

Figure5: Interrupt Structure After User Program Installation

33

*

icb file: "sysibeep.asnt
exanpl e of code installing itself into
Systenint 1000 Hz interrupt

Fred Martin
Thu Cct 10 21:12:13 1991

* % X X X Xk

#i ncl ude <6811regs. asnp
ORG MAI N_START
subroutine_initialize_nodul e:

#i ncl ude <I dxi base. asn®
* X now has base pointer to interrupt vectors ($FFO0 or $BF00)

* get current vector; poke such that when we finish, we go there

LDD TOCAI NT, X ; Systemint on TOA
STD i nterrupt _code_exit+1
* install ourself as new vector
LDD #i nterrupt _code_start
STD TOCAI NT, X
RTS

* interrupt program begins here

i nterrupt_code_start:

* frob the beeper every tine called
LDAA PORTA
EORA #96©0001000 ; beeper bit
STAA PORTA

i nterrupt _code_exit:
JMP $0000 ; this value poked in by init routine

Figure6: sysi beep. asm Binary Program that Installsinto System Interrupt

initialization program.

The method allows any number of programs located in separate files to attach themselves to the
System Interrupt. Because these files can be loaded from the C environment, this system affords
maximal flexibility to the user, with small overhead in terms of code efficiency.

5.12.3 The Binary Object File

The source file for a binary program must be named with the . asm suffix. Once the . asmfile is
created, a specia version of the 6811 assembler program is used to construct the binary object code.
Thisprogram creates afile containing the assembl ed machine code plus|abel definitionsof entry points
and C variables.

S116802005390037FD802239FC802239CC0045FD8022393C
S9030000FC
S116872B05390037FD872D39FC872D39CC0045FD872D39F4
S9030000FC
6811 assenbler version 2.1 10-Aug-91
pl ease send bugs to Randy Sargent (rsargent @thena.mt. edu)
origi nal program by Mt orol a.
subroutine_doubl e 872b *0007
subroutine_get foo 8733 *0021
subroutine_initialize_nodul e 8737 *0026
subroutine_set foo 872f *0016
vari abl e_foo 872d *0012 0017 0022 0028

Figure 7: SampleIC Binary Object File: t esti cb. i cb

Theprogramas11._i ¢ isused to assemble the source code and createabinary object file. Itisgiven
thefilename of the sourcefile asan argument. Theresulting object fileis automatically giventhe suffix
.icb (for IC Binary). Figure 7 shows the binary object file that is created from the t esti cb. asm
examplefile.

5.12.4 Loading an ICB File

Oncethe. i cb fileiscreated, it can beloaded into 1C just like any other Cfile. If thereare C functions
that are to be used in conjunction with the binary programs, it is customary to put them into afilewith
thesamenameasthe. i cb file, and thenusea. | i s fileto loadsthe two files together.

5.12.5 Passing Array Pointers to a Binary Program

A pointer to an array is a 16-bit integer address. To coerce an array pointer to an integer, use the
following form:
array_ptr= (int) array;

wherear ray _ptr isaninteger and ar r ay isan array.

When compiling code that performs this type of pointer conversion, IC must be used in a specia
mode. Normally, IC does not allow certain types of pointer manipulation that may crash the system.
To compilethistype of code, use the following invokation:

35

ic -wzard

Arraysareinternally represented with atwo-byte length value followed by the array contents.

5.13 IC File Formats and Management

This section explains how | C deals with multiple source files.

5.13.1 C Programs

All files containing C code must be named with the . ¢” suffix.
Loading functions from more than one C file can be done by issuing commands at the IC prompt
to load each of the files. For example, to load the C filesnamed f 0o. ¢ and bar . c:

C |l oad foo.c
C |load bar.c

Alternatively, the files could be loaded with a single command:

C |oad foo.c bar.c

If thefilesto be loaded contain dependencies (for example, if one file has afunction that references
a variable or function defined in the other file), then the second method (multiple file names to one
load command) or the following approach must be used.

5.13.2 List Files

If the program is separated into multiple files that are aways loaded together, a “list file” may be
created. Thisfiletells IC to load a set of named files. Continuing the previous example, afile called
gnu. | i s can be created:

Listing of gnu. | i s:

f 0o. cC
bar.c

Thentyping thecommand| oad gnu. | i s fromthe C prompt would causebothf oo. ¢ andbar . c
to be loaded.

5.13.3 File and Function Management

Unloading Files Whenfilesareloaded into IC, they stay loaded until they are explicitly unloaded.
Thisis usually the functionality that is desired. If one of the program files is being worked on, the
other ones will remain in memory so that they don’t haveto be explicitly re-loaded each time the one
undergoing development is rel oaded.

However, supposethefilef oo. ¢ isloaded, which contains adefinitionfor thefunctionmai n. Then
thefilebar . c isloaded, which happens to aso contain a definition for mai n. There will be an error

36

message, because both files contain amai n. 1C will unload bar . ¢, dueto the error, and re-download
f 0o. ¢ and any other files that are presently loaded.

The solution isto first unload the file containing the mai n that isnot desired, and then load the file
that contains the new mai n:

C unload foo.c
C |load bar.c

5.14 Configuring IC

| C hasamultitude of command-line switchesthat allow control of anumber of things. With command-
lineversionsof | C, explanationsfor these switches can be gotten by issuing thecommand“i ¢ - hel p”.
|C stores the search path for and name of the library files internally; theses may be changed by
executing the command “i ¢ - confi g”. When this command is run, IC will prompt for a new path
and library file name, and will create a new executable copy of itself with these changes.
The Macintosh version of IC is configured by changing the values of STR resources using a utility
like ResEdit.

37

6 Sensors and Motors
This section explains how to interface avariety of devicesto the Handy Board:

¢ A DC motor.

e A microswitch touch sensor.

A photocell-based light sensor.

e Aninfrared refl ectance sensor.

First, proper connector wiring technique, applicable to all devicesis explained. Then individual
wiring diagrams for each of the devices are presented.

6.1 Connector Wiring Technique

Connectors are the bane of existence of all electronics. If there is one weak link in the reliable
performance of any electronic system, it is its connectors. With this in mind, the importance of
patiently and neatly built robot connectors cannot be overemphasized. Particularly since a robot is
a mobile system subjected to various jolts and shocks, care taken in the construction of the robot’'s
connectorswill always pay off in the long run.

The Handy Board uses 0.1 inch male header as its connector for both motors and sensors. These
are not the easiest connectors to work with, but they have a very compact footprint, allowing a large
number of devicesto be individually connected to the Handy Board.

The technique presented here has been time-tested to yield reliable results. There are four basic
stepsin the process:

1. Stripping and tinning wire ends.
2. Inserting heat shrink tubing on the individual wires.
3. Soldering wire ends to male header connector.

4. Shrinking tubing around the joints.

The remainder of this section explains the technique, showing diagrams for building the standard
DC motor connector.

6.1.1 Wire Type

It isimportant to use stranded, not solid, wire cable. Each length of stranded wire consists of a twisted
bundle of very thin thread-like wires. Solid wire, on the other hand, is a single thick wire segment.
The advantage of stranded wire is that it is much more flexible than solid wire, and also less
susceptible to breakage. One thread of a stranded wire lengths can break without affecting the
performance of the connection, but if a solid wire breaks the connection islost.
An ideal wire for building sensor and motor cables is 28 gauge ribbon cable. Ribbon cable is
stranded; the 28 gauge is the right weight to carry the current required to drive motors while till

38

providing excellent flexibility. Ribbon cable aso “zips’ easily, so that sets of two or three wires can
easily be made. Finaly, rainbow ribbon cable is brightly colored in a ten-color sequence, making it
easy to keep track of which wire connects where.

6.1.2 Stripping and Tinning Wire Ends
Stripped Wire Ends

4

Solder \
(0=

Ry
0/0’(9,/)79 Ve
On

Thefirst step isto strip insulation from the wire cable and tin the wire ends. “Tinning” isthe process
of infusing the stranded wire end with solder.

Remove between 1/8 and 1/4 inch of insulation from the end of each wire. With your fingertips,
individually twist the threads of each wire end tightly (follow the existing weave of the stranded wire
bundle). Then, put adab of solder onto the soldering iron, hold it to the wire end, and add some sol der
to thewire end. Draw the iron tip along the wire end to evenly distribute solder into the wire end.

6.1.3 Installing Heat Shrink Tubing

Sensor Connector
1/4” Lengths
Heat Shrink Tubing

| 5

Cut a 1/4 inch length of heat shrink tubing for each connection, and feed a tubing segment onto each
wire.

39

In preparation for soldering, align the wires with the male header pins as indicated in the diagram.
If necessary, zip back theindividual wires so that the tubing does not get in the way of the connection.
(The use of a*“helping hands’ tool is helpful here—atool with two alligator clips on flexible arms.)

6.1.4 Soldering to Male Header
Solder

Ol

Line up the wire ends with the male header pins and solder. Make sure that the heat shrink tubing is
far enough away from the joint that the tubing does not shrink prematurely.

40

6.1.5 Shrinking the Tubing

Gently apply heat from heat gun to shrink the tubing over the joints.

Slide the heat shrink tubing over the joints, and apply heat from a heat gun. If a heat gun is not
available, the open flame from amatch or butane lighter may be used. Hold thejoint so the heat shrink
tubingisat least 1 inch abovethetip of the flame.

That’sit! The connector end that plugsinto the Handy Board is now compl ete.

41

6.2 Motors

f i

DC Motor

The DC motor connector uses two male pins on 0.2 inch spacing; i.e., the outer two of three pins. The
center pin can be clipped away from the assembly.

Motors used with the Handy Board should be rated for 9 volt operation with a maximum current
draw of about 600 mA.

6.3 Sensors

6.3.1 Basic Sensor Connector

[| sensor signal

[| +5v supply

[| ground

The Handy Board uses a three-conductor connector for plugging in sensor devices. As indicated in
the diagram, the connector is formed from 4—prong male header pins, with one pin clipped away to
polarize the connector (i.e., prevent it from being plugged in improperly).

The pin labelled “+5v supply” may be used to power an active sensor (e.g., the transmitter LED
of areflective optosensor). The pin labelled “sensor signal” is the input to the Handy Board circuitry;
thismust be in the range of 0 to 5 volts. The pin labelled “ground” is the system ground.

The Handy Board includes a 47K pullup resistor that is wired between the sensor signa line and
the +5v supply on all of itsinputs, both analog and digital. This simplifies sensor design in several
regards.

e All sensors have adefault level of +5v when nothing is plugged in.

e For switch-type or resistive-typesensors, the sensor devicejust needsto bewired from the sensor
signal pin to ground. Thus many sensor devices reduce to a simple two-wire connection.

42

6.3.2 Switch Sensor

T

Microswitch—style

sensor
NCC> NO OC
+5v | |
ground | |

Wire to switch terminals labelled
C (common) and NO (normally open)

The above diagram shows how to wire a microswitch-style sensor to the Handy Board. Asindicated
in the diagram, the switch terminals labelled “C” (common) and “NO” (normally open) should be
connected to the sensor plug.

Thiswiring creates a switch sensor that is normally open, or disconnected, except when the switch
ispressed. The normally open case means that the sensor lineis pulled high by the 47K resistor on the
Handy Board. The standard software for reading the state of a switch interprets this logic high value
as “not pressed” or false. When the switch is closed, the sensor line is connected to ground, and the
softwarereads alogic low value, which isinterpreted as “pressed” or true.

A pushbutton-style switch, or any ssimple switch, may be wired in the same fashion.

6.3.3 Photocell Sensor

signal | —
CdS photocell
(or other resistive
+5v | sensor)
ground | =

The photocell sensor wiring also makesuse of the on-board 47K resistor that connects the sensor signal
lineto +5v. When wired fromthe signal lineto ground, the photocell becomes part of avoltagedivider

43

circuit as indicated in the schematic to the right. The output voltage Vout in the circuit is the sensor
signal line.

\out varies as to the ratio between the two resistances (the fixed 47K resistance and the varying
Rphoto resistance. When the photocell resistance is small (as when brightly illuminated), the Vout
signal isclose to zero volts; when the photocell resistance is large (asin the dark), Vout is closeto +5
volts, with a continuously varying range between the extremes.

This means that the sensor will report small values when brightly illuminated and large valuesin
the dark.

6.3.4 Infrared Reflectance Sensor

Quality Technologies QRD1114

Infrared Reflective Optosensor

signal |
ground [! \ J

330Q resistor

The infrared reflectance sensor consists of two discrete devices: an infrared LED emitter and an
infrared phototransistor receiver. The receiver and emitter are matched, so that the peak sensitivity
of the receiver is at the same wavelength of the emissions of the emitter. In the example Quality
Technologies QRD1114 sensor diagram, the detector LED is on the left and the emitter is on the
right.

Thewiring for the reflectance sensor is straightforward. The emitter LED is powered by the Handy
Board's +5v supply, with a 330 ohm resistor in series to limit the current through the LED to an
appropriate value. The detector transistor is pulled high with the Handy Board'sinternal 47K resistor.

Whenincreasing amountsof light fromtheemitter LED isreflected back into thereceiver, increasing
amountsof current flow through the receiver transistor and hence theinternal 47K resistor. The voltage
drop across thisresistor resultsin alower voltage presented to the Handy Board’s analog input.

Different varieties of phototransistor may perform better with a smaller resistor value than the
on-board 47K resistor. If the sensitivity of the deviceis poor, try connecting the signal lineto the +5v
supply through 10K, 4.7K, or 2.2K resistorsto determine the best response. For the QRD1114 device,

44

however, the default 47K valueisidedl.

Soecial note for working with infrared light: Infrared light isindeed invisible (unless you
are a bumblebee), making it hard to ascertain that a given infrared emitter LED is indeed
working. Here are two methods that may be used to visualize its presence: (1) Look at
the IR LED through avideo-camerathat has aviewfinder CRT screen. The CCD lensof a
standard video-camerais sensitiveto infrared light, and it will bevisible onitsdisplay. (2)
Purchase an infrared detector card (Radio Shack 276-099 or MCM 72-003 and 72-005),
which contains a phosphorescent panel that glowsvisibly under infrared illumination.

Quality Technologies QRB1114

Infrared Reflective Optosensor

signal | |

+5v |

ground |

330Q resistor

The Quality Technologies QRB1114 sensor, above, is another good reflective optosensor. In
the diagram, the left-hand component, marked “E” on the device package, is the infrared emitter, and
the right-hand component, marked “S,” is the infrared sensor.

45

7 Battery Maintenance

The Handy Board has a 9.6v, 600 mA battery pack consisting of eight AA-cell nickel-cadmium
rechargeable batteries.

7.1 Battery Charging

There are three ways to charge the internal battery:

1. Adapter plugged directly into the HB. Just plug the adapter into the power jack on the HB, and
theyellow “CHARGE" LED on the HB will light. Thisis atrickle-charge mode, which means
that (1) the Handy Board will fully charge in about 12 to 14 hours, and (2) the HB may be left
in this mode indefinitely.

2. Adapter plugged into the Serial Interface/Battery Charger board; HB connected via telephone
wire; “ NORMAL CHARGE’ mode selected. The yellow “CHARGE” LED on the interface
board will light. Thisisatrickle-charge mode, which means that (1) the Handy Board will fully
chargein about 12 to 14 hours, and (2) the HB may be l€eft in this mode indefinitely.

3. Adapter plugged into the Serial Interface/Battery Charger board; HB connected via telephone
wire; “ ZAP CHARGE” mode selected. Theyellow “CHARGE” LED on theinterface board will
not light. The ZAP CHARGE will fully chargethe HB’ s battery injust 3 hours, after which time
the battery will become warm and it should be removed from charge or placed into either of the
two trickle-charge modes.

When using one of the trickle-charge modes, the Handy Board itself should be turned off so that
the charge current goes toward charging the battery and not smply running the board. In Zap charge,
thereis enough charge current to operate the board and charge the batteries at the same time (assuming
that the board is not driving motors or other external loads).

7.2 Adapter Specifications

The specifications of the Handy Board’s DC adapter are as follows:
e 12 volt, 500 mA DC output
e 2.1 mminside, 5.5 mm outside diameter barrel-type plug
e center conductor negative

Most “universal” type adapters will work properly at one of their settings. Look for the yellow
charge LED to light up indicating proper charge (make sure the Charge Rate switch is set to “Normal”
mode).

Please be careful not to get an adapter that is overpowered. Problems have been reported using
adaptersthat arerated for 1 to 2 amps.

Also, do not use an adapter that is underpowered or undervoltage. A 9 volt adapter will appear
to work—the charge LED will light—but it won't be able to charge the battery for more than a few
minutes worth of power.

46

8 Part Listing

Circuit: hbschl2

Dat e: Thursday, Novenber 30, 1995 -

Devi ce Type Num

8 cell AA nicad pack
2% pol yprop cap
nmonolithic cer cap
mni radial 'lytic
nmonolithic cer cap

t el ephone cabl e
tantal um

mni axial 'lytic
mni axial 'lytic
power di ode

si gnal diode

bridge rectifier

AC or DC adapt er

CPU board encl osure
interface encl osure
Pol ySwi t cha fuse
Coax Power Jack

RJ11 top entry

RJ12 side entrK
10- pi n feral e header
12-pin fermal e header
14-pin fermal e header
14-pi n mal e header

3 pcs 9-pin fenal e hdr
3 pcs. 7-pin femal e hdr
3-pin fenal e header
4-pi n header

4x2 header, fenale
DB- 25 fenal e connect or
iron core inductor

hi gh-eff red LED

hi -eff yell ow LED
hi -eff green LED

NPN darl i ngt on

1% precision res
trinpot

RPACK6

RPACK9

14-pin DI P socket
16-pi n DI P socket
20-pi n DI P socket
28-pin DI P socket
52-pi n PLCC socket
pi ezo beeper

SPDT slide swtch
SPDT switch
pushbutton sw tch
32K static CMOS RAM
hex inverters

quad Schm tt NANDs
3-t0-8 decoder
tristate bus driver
transparent octal latch
octal latch

vol t age nonitor

i nfrared denodul at or
nmot or driver
vol t age regul at or
vol t age regul at or
RS232 converter
6811 mi croprocessor
16x2 LCD

m croproc crysta
femal e strip header
mal e strip header

RPRARPRRRPRPNNRRRRRRPRPRRNRRPRPRERNANNRPRPNNRWRRRRWONRE ON NRPRRNRPRRRPRPRPRRRRNRRRPRRRERRNNRNARNR R

9: 58 AM
Val ue Ref er ences Price Ea. Catal og No. Suppl i er
BAT1 19. 28 P227-1024- ND Di gi key
0. 0068 uF C6 0. 49 P3682- ND Di gi key
0.1 uF C5 C7 CO Cl4 0.21 P4917- ND Di gi key
10uF Cl0 Cl1 C12 C13 0.08 P6248- ND Di gi key
22 pF ClL 2 0.18 P4841- ND Di gi key
4-Wmre CAB1 1. 60 17MP007 Mouser
4.7 uF 4 C8 0.29 P2011- ND Di gi key
47 uF Cl5 C16 0.29 P5972- ND Di gi key
470 uF C3 0. 65 P6305- ND Di gi key
1N4001 D3 0.15 333-1N4001 Mouser
1N914 D1 0.15 333-1N914 Mouser
DB101 D2 0.62 DB101- ND Di gi key
12v, 500mA DC1 3.95 100087 Janeco
ENCL1 5.12 537-402- RD Mouser
ENCL2 1.94 400- 5043 Mouser
F1 1.32 RUE250- ND Di gi key
2.1nm I D J11 J12 0.34 CP- 002A- ND Di gi key
6/ 4 J5 1.08 154- UL6642 Mouser
6/ 6 jéo 1.28 154- UL6661 Mouser
Ja
J14
J15
J2 [FEMALE HEADER | S CUT
J1 FROM 36- PI N HEADER
J7 LI STED AT END OF PAGE]
J8 J13
J6
J9 1.54 152- 3425 Mouser
1 uH L1 0.84 M7010- ND Di gi key
HLMP1700 LED1 LED2 LED3 LED4 0.282 HLMP-1700QT-ND Digi key
LED9 LED11 LED13
HLMP1719 LED14 LED15 0. 282 HLMP- 1719QT- ND Di gi key
HLMP1790 LED5 LED6 LED7 LED8 0.282 HLMP-1790QT-ND Digi key
LED10 LED12
ZTX614 QA 0.59 ZTX614- ND Di gi key
10K R3 R7 0. 0235 10KEBK- ND Di gi key
1K R2 R5 R10 0. 0235 1KEBK- ND Di gi key
2. 2K RO 0. 0235 2. 2KEBK- ND Di gi key
2.2M R1 0. 0235 2. 2MEBK- ND Di gi key
3. 83K R4 0.11 3. 83KXBK- ND Di gi key
20K VR1 0.72 569- 91AR- 20K Mouser
47K R6 R8 R15 0. 0235 47KEBK- ND Di gi key
47%p 5W R11 0.41 47W 5- ND Di gi key
47 %o R12 R13 0. 0235 47EBK-ND Di gi key
A47%p 1/ 2W R14 0. 06 47H ND Di gi key
1Kx4 RP4 0.21 592- 8A- 1K Mouser
1Kx5 RP2 0.16 592-6S- 1K Mouser
47Kx9 RP1 RP3 0.27 592-10S- 47K Mouser
DI P4 DI P5 0.57 ED3114- ND Di gi key
DI P6 DI P7 DI P8 DI P9 0.65 ED3116- ND Di gi key
DI P1 DI P2 0.81 ED3120- ND Di gi key
DI P3 1.13 ED3728- ND Di gi key
PLCC 2.03 A2123- ND Di gi key
SPKR1 1.90 P9957- ND Di gi key
SWL 4. 47 CKN5006- ND Di gi key
SW 1.10 SWL01- ND Di gi key
SW2 SWB 0.20 P8006S- ND Di gi key
62256- 100LP U2 3.95 42833 Janeco
74HC04 U] 0.29 570- CD74HCO4E Mbuser
74HC132 u7 0. 46 511- MF4HC132 Mouser
74HC138 U6 0. 46 570- CD74HC138E Mbuser
74HC244 uUs 0.70 570- CD74HC244E Mouser
74HC373 U3 0.68 570- CD74HC373E Muser
74HC374 us 0.61 570- CD74HC374E Mouser
DS1233- 10 ui2 1.25 manuf act ur er Dal | as Seni
1 S1U60 uls 3.00 manuf act ur er Shar p
L293D ulo U1l 3.00 manuf act ur er SGS- Thonson
LM2931Z-5.0 U14 U17 0.90 LM2931Z-5. 0-ND Di gi key
LM7805CTB uU13 0.53 NJM7805FA- ND Di gi key
MAX232CPE Ul6 1.95 24811 Jameco
MC68HCL1A1FN Ul 8. 00 manuf act ur er Mbt or ol a
Hi t achi W 8. 00 LMD52L Ti mel i ne
8 Mz X1 2.32 332-5080 Mouser
1.10 929974- 01- 36- ND Di gi key
0.76 929834- 01- 36- ND Di gi key

a7

9 Schematic Drawings

9.1 CPU and Memory

vd >
Jonwsues) Hi zool[>
€001 [>
[03U0d @07 yoor [>—
ndino ozeid ool >
19A19981 Y| 1oIL [
2o1L >—
sindur enbip
eoll [>

Jadaag oza
THIdS

sinduj
Bojeuy

L
[]
n

SO0L

07LNVY >

vaow >

UN2uID AIoWS pue NdD :pleog NdD Z'T uoisian preog ApueH

POIT T
vad .
& 5h
= EELEERE =8
Anua doy TTCY g
axy _
8ETOHYL 7.. axy
¢ “Sa slews) ‘1apeay Zxy
L4 oA sc B>
21V
£Tv—<b A HMAMSNA ISON
3 ¢ Ae+ >0S
vA oSN
4 9x 109]3s Indino Jojow ES
oapg
LA < LA 109[8s ndui Bip
<
oSN OHIX/OHI
SOl
y: < L70a
ss T 13s3~
axL —
m&mrmumma%%] 2y
00LEANTH d1001-95229
ZTSvez IPSH 10Q -
/
000000VPSOSS X naan T 5
1 10000dA /SO IL
seleovova /11111 S TN T goynqq Ly
STViggistvad T2evsoL av /1 Ol (3 NS+ 4
Voro aglviviead YYVVVYVY ddE2a duix S E a
very TV/s8d ddddddd dddd 13s3y E a
Tv/vad dd aviod
ru—ae| TvEad 9Qv/90d . a
Wy v/zad 11OH89 SaV/SOd vT
18d vavivOd €1
= a 08d H £QV/EDd 3 ZIv2¢
03d 2avizod TV
YNV/P3d m_ m m m_ Tav/Tod oTv-E£
INV/T3d 0av/00d 3 6
VVYVY 1 wax e avi¥e €LEDHYL
4d 27 4
[N av v o N s T517g
zoEL1usaa ML | = 9 N oL a/15q
v 3333 11s00Ss /X ™ S v—T] a9
« ddddAAAWWY3INT 4d z; m v = W mu T3
v 7_5 Z‘Swﬁm q m«.— 94 - Ry « o mmm
v _ | | dvbirn ZHN 8 WZ'Z TO I m—— o0 a4
v I T 3 ¥20L ¢, o ov = < alg
v v o T oSV
(44 oo/ptt
As+ MIoSe—i T
EN o
RIRRRRE| | 15 <] &
=or] RRRRRK v LEEREEERER] s 8¢ < wmdwaw
vl L9svezTtodotdup 2ETOHYL
STV PPPPPPPP (WWSMU 5)
m\suimél_ .L. 5 1d B =
PEEEEEEL TR a1 er p STV ot-eez18ar]
0006606056 i
aoni pub
er == CETOHYL Sof19591 un |
sng uoisuedx3 vn €ez1sa ||_l
NS+
zin

48

9.2 Motor Outputs

ANODel0l0N

N

L700 [

Y0OHYL
€T 9
1T 0T pub
B i e
p— 60 Jlleu no
1 o1l ¢ vinoles
FOOHVL g ¢%° B0y
aeec
ul Nno |——
o A
¢l 1Inhino
p6N 150 €
T oo A lapeay sjewsay uid-zT
UMAOLON > g o A Y
NG+ T
V.LEOHYL szmoﬂo_z 0 W
Id__ 81 w|%_3 YOOHYL — Im.o
R A i
Sa 2 PO I sHI S a3
v IT |0 &p9L S 9 =0
A SsT pub O
Za 7 19€ 3 o6n yul £
z Og=—— STeur no [
Ta g T o 3 o1 gul iz} T K
0d €7 7T L
A £ino
TP TOOHVZ g TT
T0[P0/ aeec ve
cul zino || a =3 =) () < =) o B
- I o ORISR
a0 182 010 € * 1 t t
_ T SSA SA A— ,—
E T I L z I T z
z z = = = =
YMJHOLOW AG+ X R 3 2 8 2
~ ~ ~ ~ ~ ~
© o [o [o
o o o o o o

unaanD ndinQ Jolon

MS-1dV1S

SXAT 2dd

preog NdD Z'T UOISIaA preog ApueH

49

9.3 Digital Inputs

Handy Board version 1.2 CPU Board: Digital Input Circuit

D0.7 [>
Y7 [>
+5V us
RS +—1ai/G
START-SW [>— 17 Liag 1yql 3 D7
47K 2 11’5 1yplL8 D6
15 5 D5
4 |FAS 1YSE b4
1A4 1Y4
MODA >
D1 P! 194,/
« , 1N914T 6 |14 D3
Start T3 RAL Y15
2A2 2Y
Sw2 8 g sygl2_ D1
11 9 DO
~—o A4 2v4)
. ., 74HC244
Stop
Sw3
1
= ~RESET > z
4
5
6
7
PAI 8
9
Tic2 [0
47Kx9
mics >
blsl7lelslalz et
000000000
J2
I0-0-0-0-0-0-0-0-0;
[0-0-0-0-0-0-0-0-0]

Digital Inputs
9.4 Analog Inputs

Handy Board version 1.2 CPU Board: Analog Input Circuit

AN7..0 ;

+5V

VR1
20K

IRQ/XIRQ >

TIC3 D—] 47Kx9

J1

o|o|wo|~|o|a|s|w vl

0-0-0-0-0-0O-Qf
0-0-0-0-0-O-Of

Analog Inputs

50

9.5 Infrared Transmission

Handy Board version 1.2 CPU Board:

TOC2

Infrared Transmission Circuit

+5V

J7

ro
ro

- [nole

R5 1K

LEDO
HLMP1700 %/

[2
1

U7a
74HC132

C6
0.0068 uF

2% polyprop cap

U9a Q1
R3
L 2 NN
10K
74HC04 ZTX614

NPN darlington

O
3-pin female header

Handy Board version 1.2 CPU Board: Power Supply Circuit

9.6 Power Supply
LED15 R13 UNSWPWR
J12 HLMP1719 470Q U
\\ D3
) R14 b
Coax Power Jack 1N4001
2.1mm ID 47Q, 1/2W power diode
Charge —
Jack N F1

Swi

——

PolySwitch® fuse

[o}

u13
LM7805CTB

1

3
SPDT slide switch ™ L 5
2 o o
=
. 1+
BAT1 = - -
_ ui4
8 cell AA nicad pack E LM2931Z-5.0
e 3 1 . -
L1 > O S T _L E
[¢] ~ o L]
"o 1~ 1I=°

< MOTORPWR

Motor Power
Header

Motor-GND

51

9.7

9.8

Infrared Reception

Handy Board version 1.2 CPU Board:

+5V

TicL > .

uis

Sharp IS1U60

-

Infrared Input Circuit

+5V

3

123

Serial Interface and Battery Charger

Handy Board Interface/Charger Unit, version 1.0

u17

+5V
LM2931Z-5.0
, 3 1 .
L ° L bhy
c15 c16 1K
47 uF 47 uF
LED13
Coax Power Jack — — — /% HLMP1700
2.1mm ID - - - “PWR”
R11 =
470, 12w “CHARGE”
R12 Z
3
47Q LED14
HLMP1719
Sw4
J9 1 —o)— ZAP! s
g - SPDT switch
4 +5V
é 5 u16) +5V
< 6 c10 "
< 7 + 2 Cl+ b
8 v+ c1.3 Cc14
9 10UF Ta 10uF 0.1 uF
< 0 L 6l\. C2+] c13 I
g 1 = c11 ca2.B —
2 + -
< 3 n 14|T10ut Tiinl11
S 4 10uF 10uF
é g = 7 Tzouto<} T2inl10 Jio
< Ti7 | 3
< 8 13|R1in Rilout|12 g
< 9 4
S gi 8| R2in {>°R20u19 5|
22 8
| 23 R9 RJ12 side entry
24 29K MAX232CPE
| 25 —
DB-25 female connector NS LED12 MAX232:
HLMP1790 pin 16 = +5v
SER pin 15 = gnd

52

10 Printed Circuit Board Layouts

10.1 Handy Board Component Side

fﬁ
>) °1

°
0J0|0|¢
o
o

\o (o)
; t"}T“ j
I(o o o (o)
() v Llo. |L
sl TS o
: Ay f olo)ololo
ollc|ro) 5.2/20(0| \o|lofo|o|o
o/}
o a
(o)

ofl
o
o oll SN\ o|lo|o|o]o
o oll olf o lo g19Jo(o]0
, o ololo
d o dolo
oJ| ollfo olo ||[&¢
oo o O o|o
z ,?|a 0 olo
S olllo 0\d o oolo
- |\ °°°l 219 ol o000
o
/) (o]
Jé \ 0 0l0)10 o
\ /
olooo C
° o
o o -
o
oD

Q_I/
o o o o
o oo o (o]
i Oo o
a —
P4
L
=z W
o2
awnm
o o
5 o a
(@]

10.2 Handy Board Solder Side

o
A2y o\oo’ooon\;f//d—x,—\"’\—oooos’ o

[,_Ot%ﬁ: —=Oy E O
mf] e o S

O____\o
m [_°‘°'°
/looo,o :Lo l 0—0-0

(o)
00%
o
f'v. d4A08 YdJWAH
(o B0

O
O
O

Ek}:

on opm onmn <>n‘b

3

10.3 Handy Board Silkscreen

L2 ¢ ¥ S 9

L 8 60l LZ2lE%LylGl

\J 1NoNI ., @ ~ rdMd1livd dOlS L1¥HLS vzia
5 2 aquvos8 AGNVH
A 2 lems | | zms]| Al
< I [98 @
SXo—2dd w®R
o
5
g
¥ 9L
Tout c ace6zi—-1iin @@m
c _ I 2
ASLA3T NALVLLOHS9 o < M
oir - _ z D4 5
~N T o
3996H) N T o e
i N N s
A » 0
2 BN asez1-oin o
o . =
Sl d3T 8
m %\D\ | = =
SE .ﬂ_. szw
& _x cin
/. or Y@OHY L—6N
_ oNo LIyF 5 af
o |
| — - C —
0 S gvdd
" o | 4+ %\@D\ o
z ~ ‘ C ey
3 U 13 Wv = =0
o C/SOHVL—SEN - o 2 - &=
d1021-95209-2N ~ N o
_ L N4 A
L O
cr Apjdsig Q@d91-+n
|) |)
+ -

AMd G| vSYSOLGA VA CAZA LA BA

WINW

£3d90G6d¥d¢A2d 1ded v18VEV JA G+ ANO

55

10.4 Interface/Charger Board Component Side

O O 000000000000 O
o T 0QROe000000000 Clgcgge
o Q NORMAL "g€
Q3 o mo bo u; oo
S Q o
Q< ejoQgooooo0mn

<2 @

g ?;D'- o 0 0jO O OZAP// (o)

6\< Ro 5 00O

zZ 0 ~ 00O

-3

=3 Q
Q 0 (C) 1997
QO ® O j ol O O Fred G. Martin

SE PWR CHARGE MIT Media Lab

10.5

Interface/Charger Board Solder Side
O 00O O o I o 00000 O
O 0000 O

POOOOOO

“k oo o

ZWF/—J
LI

O O

o

O

56

10.6 Interface/Charger Board Silkscreen
SCyE-CST ¥3ISNOW c
©
¥l ch
I arge
W LT Rote
S 3 @@0@“‘”“”“
2 =0
=
Q-\% N ! n
@D o, M2 |: u16 =
0 o ? &) > A
- . w) =
® . N 1+ ZAF!! -
< —_— T
o®2 —— {- 16 +
=3 @ T
Q aQ R9 R10 R12
Q 0 [
0) ® =
o LEDT2G 13R 14 o
c @ © ©
— PWR CHARGE

57

11 Pin-Out Detalil

SPI
+5V a\D
M SQ PD2 SS/ PD5
Mot or Ports MOSI / PD3 SCK/ PDA4
[]nvoT 0+ NC N C
®O [|NC
|| MOT 0- MOB8HCL1ALFN
|vor 1+
®O[L]INC Battery
| |MOT 1- Power
| vor 2+
QOLNe PRER
| |MOT 2- i [EREE
MOT 3+ dddd o [TT 1]
®®|ZO _HDHD Digital In Anal og I n | R QUT
| MoT 3- HEEEEEEEEnEEEEEEn +
. . nmmmamiis 8838888 [
88 fZE2EZEZ%
START/ Bl T7 STOP/ BI T6 tElE
Not es: YO t hrough Y5 are active Wite 0x4000 = YO

The 'Bit X' on the
buttons and Di gital
In are bits of a
read t o OX7FFF.

| ows. This tabl e shows
what to do to force them
| owfor acycle.

Read 0x4000 = Y1
Wite 0x5000 = Y2
Read 0x5000 = Y3
Wite 0x6000 = Y4
Read 0x6000 = Y5

This diagram was contributed by Brian Schmalz.

58

12 Frequently Asked Questions

This section answers some common questions and problems regarding the Handy Board. Please note
that the information here is only a subset of the full FAQ, which is on-line. For more questions and
answers, please refer to the on-line FAQ at

http://el.ww. medi a. nit. edu/ proj ect s/ handy- boar d/ f ag/

12.1 Hardware
12.1.1 Motor Voltage

How can | use motors other than 9 volts with the Handy Board?

The Handy Board's internal battery is rated for 9.6 volts; this is generally adequate for running
motorsrated between 6 and 12 volts. However, some 6 volt motors aren’ t happy with the extravoltage,
and some 12 volt motors will run too slowly.

Instructions are available on the Handy Board web site for modifying the Handy Board to accept
an external motor battery that can be any voltage from about 6 voltsto 36 volts. See

http://el.ww. nmedi a. nit. edu/ groups/el/projects/handy-boar d/ nods/ hbncut. ht m

Lyle Hazelwood implemented a high-current H-bridge circuit described by Chuck McManis and
tested by Jeffrey Keyzer, and posted the schematic and circuit notes. See

ftp://cherupakha. medi a. nit. edu/ pub/ contrib/lyl ehazel/ hbri dge/

12.1.2 Digital Outputs

Doesthe Handy Board have any digital outputs?

The SPI pins on the connector on the middle right edge of the board (J6) can be configured as
digital outputs. Do a poke(0x1009, 0x3c) to make them outputs; then they are mapped to the
middle 4 bits of address 0x1008 (SS= bit 5, SCK= hit 4, MOSI= bit 3, MISO= bit 2). Poke to that
address (0x1008) to set them.

dO..d7 is the data bus and stuff is flying around on those pins all the time, so they cannot be used
as outputs. If you hook an "hc374 chip to the board, in the same fashion as the one driving the motor
chips, you get 8 more digital outs. Connect the "hc374’s clock line to any of the three unused output
latch selects of the "'hc138 (YO, Y2, or Y4). All of these signals are present on the Expansion Bus.

Also, digital input #9 can be reconfigured as an output. Do abi t _set (0x1026, 0x80) to make
it an output, and then use bi t _set (0x1000, 0x80) to turn the bit on and bi t _cl ear (0x1000,
0x80) to turnit off.

Finally, TO3 isan uncommitted timer output brought out to the Expansion Bus. Thispinisbit 5 of
PORTA;i.e., setitwithbi t _set (0x1000, 0x20) and clear it withbi t _cl ear (0x1000, 0x20) .

59

12.1.3 High Adapter Voltage

I”’m measuring the voltage on my adapter, and it says 18 volts. Isthisnormal ?

Thisis correct. Normal DC adapters are unregulated and there is an inverse rel ationship between
voltage and current.

Here is how to interpret the rating on an adapter. Let’'s use the Handy Board’s 12 volt, 500 mA
(milliamp) DC adapter standard as an example.

This rating means that when a load is drawing 500 mA of current, the adapter voltage will be 12
volts.

If the adapter is plugged into the wall but its output is not connected to anything—in other words,
there is no load—then the current is zero and the voltage measured will higher than the adapter’s
specification. For the Handy Board's 12 volt” adapter, a reading of 18 voltsis normal if thereis no
load.

If thereisload that draws more than 500 mA, then the output voltage would be less than 12 volts.
Notethat it is possible to draw more than 500 mA even though an adapter might only be rated for 500
mA. The effect isthat the output voltage will be less than the adapter’s specified voltage, and also this
will overtax the adapter and potentially cause it to fail.

12.2 Software
12.2.1 ICB Files

IC won'tload my I CB files.

P ease note an important bug related to | CB files. Onthe MS-DOS platform (with both the freeware
v2.853 and commercial 3.1 beta 4) version of Interactive C, the ICB files must have Unix-style line
termination.

Here is the explanation. ICB files are text files, and in a text file, the Mac, Unix, and MS-DOS
file systems each have a different way of specifying the end of each text line. On the Mac, a ctrl-M
indicates the end of line. On Unix, it'sactrl-J. On the PC, it'sactrl-M followed by a ctrl-J.

On the MS-DOS computer platform, if you use Newton Lab’'s web-based |CB assembler (located
at href=http://ww. newt onl abs. com'i c¢/i cb. ht m), or if you download an ICB file from an
FTPserver, when you savetheresulting ICB fileit will undoubtedly create anormal MS-DOStext file,
with ctrl-M + ctrl-Jlinefeeds. You must edit thisfile and removeall of the ctrl-M’s.

Originally, ctrl-J meant line feed and ctrl-M meant carriage return (think of a TeleType machine).
So on MS-DOS, when you remove the ctrl-M’syou get files where each new line starts where the last
one ended in terms of screen column. Thiswill look wrong but it is what the MS-DOS Interactive C
versionsrequire.

On the Mac and Unix platforms, the |C accepts the corresponding native text file format. But the
MS-DOS and Windowsversions of 1C require the CTRL-M’sto be edited out of 1CB files.

Remi Desrosiers (si | ver wa@dyssee. net) contributed a DOS utility to automatically strip out
the CTRL-M’s. Itisavailableat

http://el.ww. nmedi a. nit. edu/ proj ect s/ handy-boar d/ sof t ware/i 2u. exe
Please make sure to save as source S0 it gets downloaded as a binary file.

60

12.2.2 Power Glitch

| keep getting a message that says “ - PONER GLI TCH " on the Handy Board LCD screen.

This is caused when the incorrect pcode file is downloaded to the Handy Board. Make sure you
are downloading pcode_hb. s19, not pcoder 22. s19.

It may be necessary to reconfigure your downloader to send the proper file. If you are using
Initialize Board on the Macintosh, use ResEdit to change the STR resource, naming “pcode_hb. s19”
asthefile to download.

12.2.3 | can’t get any of the downloaders to work on my fast Windows 95 machine.
What is wrong?

For presently unknown reasons, some fast Pentiums have trouble running the downloaders properly.
Here are some suggestions that many Handy Board users have found helpful:

e Whenusingdl . exe, runitinafull-screen DOS mode. (This may also be necessary when using
the freeware DOS version of Interactive C.)

¢ In the advanced serial port options, change the setting for receive buffer and transmit buffer to
the lowest value possible (min).

61

13 Vendors

The Handy Board is commercially availablefrom the following companies:

Douglas Electronics. Douglas Electronics supplies blank Handy Board printed circuit boards,
blank Expansion Boards, and Expansion Board parts kits. Douglas Electronics, Inc., 2777
Alvarado Street, San Leandro, CA 94577 USA. Phone (510) 483-8770; fax (510) 483-6453;
BBS (FirstClass) (510) 483-6548; E-mail i nf o@ougl as. com

Gleason Research. GleasonResearch suppliesassembled Handy Board systems, Expansion Boards,
and accessories. Gleason Research, PO. Box 1247, Arlington, MA 02474. Fax/phone(781) 641—
2551; E-mail i nf o@l easonr esear ch. cont URL ht t p: / / ww. gl easonr esear ch. coni .

Patrick Hui. Patrick Hui, located in Hong Kong, supplies Handy Boards, Expansion Boards, and
accessories, assembled or in kit form. Mr Hui, Pak Ki, Robot Store (HK), 7th Floor, Fok Wa
Mansion, No. 19 Kin Wah Street, North Point, Hong Kong. Telephone (852) 2563-8511; fax
(852) 2887-2519; E-mail hui p@kst ar. cont URL htt p: // hone. hkst ar. com ™~ hui p/ .

14 Handy Board Mailing List

ThereisaInternet-based mailing list available for Handy Board users.

TheHandy Board mailing list isintended for distribution of information of any sort about obtaining,
debugging, or using the Handy Board design.

In order to support everyonewho wants to use a Handy Board, it is crucial that all users help each
other in troubleshooting problems, exchanging ideas and techniques, and sharing code. Neither | (Fred
Martin) nor the Handy Board vendors can do it alone.

The Handy Board mailing list is the main way that Handy Board users communicate with each
other. All active Handy Board users are encouraged to seek technical support, advise, and ideas from
the mailing list community.

For information on joining and using the Handy Board mailing list, please see

http://el.ww. nedia.nt.edul/projects/handy-board/maillist/

15 Licensing

The Handy Board technology, including the printed circuit board layout and supplied code libraries,
is distributed under a free licensing policy. This agreement allows any party to use the Handy Board
technology for any purpose without having to pay alicensing fee.

The technology is not public domain. The Massachusetts Institute of Technology reserves the
copyright to the artwork and code. Any commercial use of the technology must include areproduction
of the copyright notice on the board itself, and must acknowledge the institutional source (MIT)
and author (Fred Martin) of the technology in an appropriate fashion in any accompanying product
documentation.

A copy of the documentation authorizing this usage is available from the Handy Board web site:

http://el.ww. nedia. mt.edu/ projects/handy-board/

62

