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Mechatronics II Laboratory Exercise 5 
Second Order Response 

 
Theoretical Background 

Second order differential equations approximate the dynamic response of many 
systems.  The response of a generic second order system can be seen in Figure 1 at the 
bottom of the page.  In this lab you will model an aluminum bar as a second order Mass-
Spring-Damper system.  The aluminum bar itself provides the mass, stiffness, and 
viscous damping for your model.  The characteristic ODE that describes this system is of 
the form,  

02 2 =++ yyy nn ωζω &&&  (1) 
where y is the system output, ζ is termed the damping ratio or damping coefficient (a 
dimensionless quantity), and ωn is the undamped natural frequency in rad/s.  If ζ < 1, then 
the system is underdamped.  This is the situation for the aluminum bars that will be used 
for this experiment. 
 One method for experimentally determining the parameters in Equation (1) comes 
from solving the differential equation and performing some mathematical manipulation.  
Since the system is unforced (thus the 0 on the right-hand side of equation (1)), only the 
homogeneous response needs to be solved: 
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Figure 1: Time response of an underdamped second-order system 
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where y0 is the initial condition of the output variable y.  Inspection of this solution 
reveals a combination of a decaying exponential and sinusoidal oscillation, similar to the 
response in figure 1. The techniques presented here are based on measuring the amplitude 
of the peaks as well as when they occur.  The time it takes to reach the first peak can be 
found by taking the time derivative of yh and setting the result equal to zero, like so: 
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Since the exponential term theoretically never reaches zero, the time to the first peak can 
be determined through reduction using trigonometric identities and algebra, resulting in 

21

,  

p
n

d

t
π

ω ζ

π
ω

=
−

=

 (4) 

where tp is the time to peak in seconds.  If the system is sufficiently underdamped 
(ζ<0.1), then the term under the radical in equation (4) approaches unity, allowing the 
natural frequency term to be solved according to the relation: 
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For such an underdamped system, its takes some time for the response to settle to its final 
value.  Generally, the settling time is defined as the time it takes for the system to enter a 
given bounded region about the system’s final value without leaving.  This bounded 
region is typically defined as a percentage of the final value.  For this experiment, the 
settling time will be defined to be when the response settles to 2% of its final value (that 
is, 2% of the difference between the initial and final values).  The settling time can be 
approximated analytically as the time it takes the decaying exponential to reach 0.02: 

02.0=− snte ζω  (6) 
which can be solved for the settling time as follows: 
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for sufficiently underdamped ( 1ζ =  ) systems.  Using the preceding equations, the 
parameters ζ and ωn can be determined. 
 The second method you will use to characterize the system is the log decrement 
technique.  The time between successive peaks in the response is determined to be 

d
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which is equivalently the period of the function sin(ωd - φ).  The amplitude of the first 
peak which occurs at tp is defined as x1.  Substituted into equation (2), this becomes 
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The amplitude of the next peak has the magnitude 
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Subsequent amplitudes follow the pattern 
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where n = 1, 2, 3, …  The ratio of two amplitudes is 
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Taking the natural logarithm of both sides yields 
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As above, for small damping ratios, the term in the radical approaches unity, resulting in 
the relation 
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If δ versus n is plotted, a straight line through the data should result, whose slope is 2πζ.  
The natural frequency ωn is then found from the damped natural frequency ωd using 
equations (8) and (2). 
 
Experiment 
1. Secure an aluminum bar to the workbench using a large C-clamp. 

2. Build an amplifier circuit.  Verify that your circuit works and experimentally 
determine the gain of your amplifier using the bench potentiometer and a voltmeter.  
k =   . 

3. Calibrate your system by displacing the tip and measuring the output voltage from 
your circuit.  You must convert the output voltage to the deflection of the tip of the 
snow-aluminum bar for the post lab report.  ddisplacement =    ,      
Vout =    . 

4. Connect the output from your amplifier circuit to AI_CH0 of the DAQ terminal 
block.  Make sure to reference a common ground. 

5. Run the 2NDORDER program from the CVI folder on the desktop. 

6. Set the sampling rate and number of samples to the appropriate value and give the 
aluminum bar a step input by deflecting and releasing it while running the program.  
Be sure you hit the START button before you release the aluminum bar.  Ensure the 
aluminum bar is sufficiently cantilevered.  You may need to physically hold down the 
back of the aluminum bar securely to keep it from lifting off the bench.   

7. Save your data when you get a response that decays sufficiently by the end of the data 
set.  Ensure a 2% settling time is reached.  Use Matlab or Excel to plot the data. 
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Questions 
1. Determine ζ and ωn using equations (5) and (7). 

ζ =    , ωn =     . 

2. Determine ζ and ωn using the log decrement technique (show your calculations 
here, but plot your data separately). 

ζ =    , ωn =     . 

3. Compare the results from questions 1 and 2: 
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4. Is a second-order approximation sufficient to model this system?  Why or why 
not? 

5. Determine the second-order pole locations for the system based on the results 
from either question 1 or 2. 

6. Briefly describe at least two other second-order systems. 


