

Name: ID #:

Department of Mechanical Engineering ME EN 7960 - Precision Machine Design

Problem Set 1 - Homogenous Transformation Matrices

Assigned:	Wednesday, September 6, 2006
Due:	Wednesday, September 13, 2006, 4 pm in 2110 MEB

Problem 1

Figure 1 Linear axis

The linear axis shown in Figure 1 consists of two linear bearing trucks, a spindle with a mass m of 682 kg, and a carriage which can be treated as being weightless. The linear bearings can be treated as linear springs with a vertical stiffness of 350 E6 N/m.

- a) Derive the homogenous transformation matrices required to determine the error that can expected at the tool tip (0.28m, 1.016m)? Determine the error at the tool tip as a result of gravity.
- b) If the axis was calibrated after assembly to eliminate the effects of gravity but is now subject to a 0.5 g acceleration in the positive x-direction, what is the resulting error at the tool tip?

Problem 2

Figure 3 shows an assembly of two linear axes that are stacked up and perpendicular to each other, thereby providing the ability to position the work piece holder in the x-y plane of a machine tool. The y-axis is mounted on top of the x-axis. The offsets shown in Figure 3 show the starting positions of both axes.

a) For the 5 rail grades available, determine the maximum error (measured at the center of the work piece holder) as a result of geometric errors of the linear rails. Assume that the rails are straight (not bowed), but non-parallel. For the rail orientation for each axis refer to Figure 4.

Geometric details:

- The A axis coordinate system at the starting point is located at (550 mm, 150 mm, 450 mm) with respect to X_R, Y_R, Z_R .
- The B axis coordinate system at the starting point is located at (0 mm, 100 mm, -250 mm) with respect to X_A, Y_A, Z_A .
- The location of the work piece is (200 mm, 115 mm, 325 mm) with respect to X_B, Y_B, Z_B .

Problem 3

Assume that you are operating on a limited budget that allows you to only buy one pair of precision grade rails while the second pair would have to be a normal grade (regardless of length).

- a) On which axis would you mount the precision grade and on which axis the normal grade?
- b) What would be the difference in errors if you had the setup reversed? Determine the numerical value.

Problem 4

If the rails are not straight as in Problem 2 but bowed as shown in Figure 2, how would you have to modify the approach used in Problem 2 to arrive at a reasonable estimate in terms of error motions?

rails in the vertical direction

Figure 2 Non-straight bearing rails

Figure 3 Stacked axes

top

X_B

side

X_B

Figure 4 Arrangement of non-parallel rails

 TABLE 1
 Machine Data

Parameter	Value	Parameter	Value
axis A travel	1250 mm	axis B travel	350 mm
axis A rail spacing	350 mm	axis B rail spacing	250 mm
axis A bearing spacing	450 mm	axis B bearing spacing	300 mm