

Introduction to Heat Transfer in Soils and Other Materials

ME 7710 Spring 2013

Surface/Skin Temperature

- T_s The temperature at the air-soil interface. For an "ideal" surface which varies in time in response to energy fluxes at the surface
 - Depends on:
 - Radiation Balance
 - Surface exchange processes
 - Vegetative cover
 - Thermal properties of the subsurface
 - Difficult to Measure (very large temperature gradients near the surface both in the air & soil)
 - Extrapolate air/soil temps
 - Radiometer uses $R_L \uparrow \sim -\varepsilon \sigma T_s^4$

Diurnal Soil & Air Temperatures

Fig. 7.17 Three day average of temperature profiles at indicated hours for the Koorin field program, days 7-9. Note the scale difference between height and depth. (After Lettau, personal communication).

> Fig from Stull, 1988 An Introduction to Boundary Layer Meteorology

Surface/Skin Temperature

- Diurnal Range
 - In dry desert $\sim 40-50$ °C
 - Surface & subsurface moisture moderate range
 - Increased evaporation from the surface
 - Increased heat capacity (c) & conductivity of the soil (k)
 - Wet soils may dry changing the temperature response
 - Vegetation moderates diurnal range
 - Intercepts incoming solar lower surface temps during the day
 - Intercepts outgoing longwave
 - Enhanced latent heat flux due to evapotranspiration (ET)
 - Increased Turbulence

Sub-surface Soil Temperature

- Much easier to measure thermocouple
- Amplitude of the temperature fluctuations decrease exponentially with depth
- Depends on
 - Latitude
 - Time of year
 - Net radiation
 - Soil texture (porosity) and moisture content
 - Ground cover
 - Surface weather conditions

Thermal Properties of Soil

- Specific Heat c (J kg⁻¹ K⁻¹) the amount of heat absorbed by a material to raise the temperature of a unit mass of material by 1°
- Thermal Conductivity k (W m⁻¹ K⁻¹) material property; the ability of a material to conduct heat
- Thermal Diffusivity α_h (m² s⁻¹) Ratio of thermal conductivity to heat capacity

1D Thermal Conduction

Fourier's conduction law

$$\frac{\partial}{\partial t}(\rho cT) = -\frac{\partial H_G}{\partial z}$$
$$\frac{\partial}{\partial t}(\rho cT) = k\frac{\partial^2 T}{\partial z^2}$$

$$\frac{\partial T}{\partial t} = \alpha_h \frac{\partial^2 T}{\partial z^2}$$

$$H_G = -k \frac{\partial T}{\partial z}$$

$$\alpha_h = \frac{k}{\rho c} = \frac{k}{C}$$

Soil heat capacity

Solutions

- Analytical multiple methods
- Numerical (e.g.) e.g. finite difference
- Force Restore 2 Layer Slab Model (See Stull Ch. 7, Backadar, 1976)

Soil Heat Transfer

• 1D Thermal Conduction

$$\int_{z=0}^{z=D} \left\{ \frac{\partial}{\partial t} (CT) = -\frac{\partial H}{\partial z} \right\} dz$$

$$H(z=0) - H(z=D) = \int_{z=0}^{z=D} \frac{\partial}{\partial t} (CT) dz$$

$$H_G = H_D + \int_{z=0}^{z=D} \frac{\partial}{\partial t} (CT) dz$$
Storage

Governing Parameters

- Thermal conductivity k
- Heat Capacity C_s

Reference depth

- Thermal Diffusivity α (sometime κ)
- Thermal Admittance μ

Governing Parameters

- Thermal conductivity k (W m⁻¹ K⁻¹)
 - Def. the ability of a material to conduct heat
 - Depends on:
 - Soil particles
 - Porosity
 - Moisture content

Governing Parameters

- Heat Capacity $C_s = \rho \ c \ (\mathrm{J \ m^{-3} \ K^{-1}})$
 - -c specific heat of the soil (J kg⁻¹ K⁻¹)
 - Relates to the ability of a material to store heat
 - Def. The amount of heat (J) necessary to increase a unit volume (m³) of a substance by 1 K.
 - Water (\sim 5 J m⁻³ K⁻¹) has a very high heat capacity, air is quite low
 - Depends on porosity, mineral content, organic content, air, etc.

Governing Parameters

- Thermal Diffusivity $\alpha = k/C_s$ (m² s⁻¹)
 - Controls the speed at which temperature waves move through the soil & the depth of thermal influence of an active surface
 - Water (~5 x 10⁶ J m⁻³ K⁻¹) has a very high heat capacity, air is quite low

Let's Look at example Data from Sage Brush at DPG

Governing Parameters

- Thermal Admittance Surface Property (not a "soil property"
- $\mu = (kC_s)^{1/2} (\text{J m}^{-2} \text{ s}^{-1/2} \text{ K}^{-1})$
 - Def. The ability of a surface to accept or release heat
 - High μ metals
 - $low \mu wood$
 - $High\ \mu$ materials feel cooler to the touch even though they have the same surface temperature

Typical Values

Table 2.1 Thermal properties of natural materials

Material	Remarks	ρ Density (kg m ⁻³ × 10 ³)	c Specific heat (J kg ⁻¹ K ⁻¹ × 10 ³)	C Heat capacity (J m ⁻³ K ⁻¹ × 10 ⁶)	k Thermal conductivity (W m ⁻¹ K ⁻¹)	Thermal diffusivity $(m^2 s^{-1} \times 10^{-6})$	Thermal admittance (J m ⁻² s ^{-1/2} K ⁻¹)
Sandy soil	Dry	1.60	0.80	1.28	0.30	0.24	620
(40% pore space) Clay soil	Saturated Dry	2·00 1·60	1·48 0·89	2·96 1·42	2·20 0·25	0·74 0·18	2550 600
(40% pore space) Peat soil	Saturated Dry	2·00 0·30	1·55 1·92	3·10 0·58	1·58 0·06	0·51 0·10	2210 190
(80% pore space) Snow Ice Water* Air*	Saturated Fresh Old 0°C, pure 4°C, still 10°C, still Turbulent	1·10 0·10 0·48 0·92 1·00 0·0012 0·0012	3.65 2.09 2.09 2.10 4.18 1.01	4·02 0·21 0·84 1·93 4·18 0·0012 0·0012	0·50 0·08 0·42 2·24 0·57 0·025 ~125	0.12 0.10 0.40 1.16 0.14 21.50 $\sim 10 \times 10^{6}$	1420 130 595 2080 1545 5 390

* Properties depend on temperature, see Appendix A3

From Oke, 1988

Effect of Soil Moisture on Thermal Properties

Figure 2.5 Relationship between soil moisture content: (a) thermal conductivity, (b) heat capacity, (c) thermal diffusivity and (d) thermal admittance for most soils.

From Oke, 1988

