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Surface/Skin Temperature

* T, - The temperature at the air-soil interface. For
an “ideal” surface which varies in time in
response to energy fluxes at the surface

— Depends on:

* Radiation Balance
* Surface exchange processes
* Vegetative cover
» Thermal properties of the subsurface
— Difficult to Measure (very large temperature gradients
near the surface both in the air & soil)
» Extrapolate air/soil temps
* Radiometer —uses R, T~ —eoT!
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Diurnal Soil & Air Temperatures
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Fig from Stull, 1988
An Introduction to Boundary Layer Meteorology

Surface/Skin Temperature

* Diurnal Range
— In dry desert ~ 40-50 °C
— Surface & subsurface moisture moderate range
* Increased evaporation from the surface
* Increased heat capacity (c¢) & conductivity of the soil (k)
— Wet soils may dry changing the temperature response
— Vegetation moderates diurnal range

* Intercepts incoming solar — lower surface temps during
the day

* Intercepts outgoing longwave

* Enhanced latent heat flux due to evapotranspiration
(ET)

* Increased Turbulence
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Sub-surface Soil Temperature

Much easier to measure — thermocouple

Amplitude of the temperature fluctuations
decrease exponentially with depth
Depends on —

— Latitude

— Time of year

— Net radiation

— Soil texture (porosity) and moisture content

— Ground cover

— Surface weather conditions

Thermal Properties of Soil

Specific Heat — ¢ (J kg™! K1) — the amount of heat absorbed by
a material to raise the temperature of a unit mass of material

by 1°

Thermal Conductivity — k£ (W m™! K1) — material property; the
ability of a material to conduct heat

Thermal Diffusivity — a,, (m? s-') Ratio of thermal conductivity

to heat capacity
1D Thermal Conduction

Fourier’s conduction law
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Solutions

* Analytical — multiple methods
* Numerical (e.g.) — e.g. finite difference

* Force Restore — 2 Layer Slab Model (See Stull
Ch. 7, Backadar, 1976)

Diurnal & Annual Soil Temperature
Temporal Variability
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red.1 Observed diurnal course of subsurface soil temperatures 31 various depths in a
iy loam soil with bare surface. [From Deacon (1969); after West (1952).)
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Figure 4.2 Annual temperature waves in the weekly averaged subsurface soil tempera-
tures at two depths in a sandy loam soil. Fitted solid curves are sine waves. [From
Deacon (1969); after West (1932).]
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Soil Heat Transfer
¢ 1D Thermal Conduction

f:{; (cr)=- Egj}dz

H(z=0)-H(z=D)= ZT;(CT)dz

Ho=Hy+ | %(CT)dz

/ z=0 \
Surface Heat Flux
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Governing Parameters

Thermal conductivity - £

Heat Capacity - C;

Thermal Admittance - u

Thermal Diffusivity — a (sometime k)
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Governing Parameters

* Thermal conductivity — & (W m'! K1)
— Def. - the ability of a material to conduct heat
— Depends on:
* Soil particles
* Porosity

* Moisture content

Governing Parameters

* Heat Capacity— C,=p ¢ (J m?3 K1)
— ¢ specific heat of the soil (J kg! K-1)
— Relates to the ability of a material to store heat

— Def. The amount of heat (J) necessary to increase a
unit volume (m?) of a substance by 1 K.

— Water (~5 J m> K-1) has a very high heat capacity,
air is quite low

— Depends on porosity, mineral content, organic
content, air, etc.
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Governing Parameters

* Thermal Diffusivity —a = k/C, (m? s!)
— Controls the speed at which temperature waves

move through the soil & the depth of thermal
influence of an active surface

— Water (~5 x 1076 J m K-!) has a very high heat
capacity, air is quite low

Let’s Look at example Data from Sage Brush at DPG

Governing Parameters

* Thermal Admittance — Surface Property (not a
“soil property”
s U= (kcs)l/z (J m2 s1/2 K-l)
— Def. The ability of a surface to accept or release
heat
— High p — metals
— low p —wood

— High p materials feel cooler to the touch even
though they have the same surface temperature
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Typical Values

Table 2.1 Thermal properties of natural materials

P c C k K "
Material Remarks Density Specific Heat Thermal Thermal Thermal
heat capacity conductivity diffusivity admittance
(kg m™? g kg 'K! Jm3K™? (Wm™ K™Y (m?s7! gm2s 2K
x 10%) x 10%) x 10%) x 107)
Sandy soil Dry 1-60 0-80 128 0-30 0-24 620
(40% pore
space) Saturated 2:00 1-48 2-96 220 0-74 2550
Clay soil Dry 1-60 0-89 1-42 0-25 0-18 600
(40% pore
space) Saturated 2-00 1-55 310 1-58 0-51 2210
Peat soil Dry 0-30 1-92 0-58 0-06 0-10 190
(80% pore
space) Saturated 1-10 3-65 4-02 0-50 0-12 1420
Snow Fresh 0-10 2-09 0-21 0-08 0-10 130
Old 0-48 2-:09 0-84 0-42 0-40 595
Tce 0°C, pure 092 2-10 1-93 2-24 1-16 2080
Water™* 4°C, still 1-00 418 418 0-57 0-14 1545
Air* 10°C, still 0-0012 1-01 0-0012 0-025 21-50 N
Turbulent ~ 0-0012 1-01 0-0012 ~125 ~10 x 10° 390

* Properties depend on temperature, see Appendix A3.
Sources: van Wijk and de Vries (1963), List (1966).

From Oke, 1988

Effect of Soil Moisture on Thermal
Properties
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Energy Flux Density (W me2)
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Fig. 1. (a) Time series and (b) hysteresis loop rela-

tivns between soil heat flux and net all-wave radi-

ation for short grass near St Louis, MO calculated

from the data of Doll et al. (1985) for a single day.

Best fit statistics give the equation: Qg =0.32Q*
+0.54(0Q* /0n) - 274,

1

b Site Code
Urban Areas e G T W
Vancouver, BC V92

Chicago, IL 95
Miami, FL Mi95

o T T Tucson, AZ 190

L | San Gabriel, LA, CA Se94
Increasing time Vancouver, BC* Vs92

7 Sacramento, CA 591

- Arcadia, LA, CA A94

_| Arcadia, LA, CA A93
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Fic. 1. Mean diurnal patterns of observed (a) AQ, (W m-2), (b) AQ,/Q%, (c) AQ, vs Q. and (d) Q,/AQ; for each of the datasets (see

details in Table 1).

transferred to the “urban
fabric” in the morning -

Grimmond & Oke 1990
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