
1

Structured Programming & an
Introduction to Error

Lecture Objectives

• Review the basic good habits of
programming

• To understand basic concepts of error and
error estimation as it applies to Numerical
Methods

Structured Programming – Ch.2
Set of rules that prescribe good habits for a programmer

• Numerical Algorithms are typically
composed of 3 types of controls
structures:

1. Sequence
2. Selection
3. Repetition

• Tools Use to develop algorithms and
visualize before actually writing code

– Flowcharts – graphical method
– Pseudocode – simplified computer code

statements

2

Basic Flow Chart Features
Start

Process

End

Decision

I/O

Sequence

Selection

3

Repetition

Conditional
Loop

Counting
Loop

Modular Programming

• Breaking up tasks into digestible parts
• The parts should be as independent & self-

contained as possible (Reusable Chunks)
– In C/FORTRAN – judicious use of subroutines
– Matlab – scripts and function

– Numerical Recipes

Example

4

Error & Error Estimation
If we have an analytic solution we can get an exact
error, if not we must estimate the error associated

with our numerical method

Significant Figures – Confidence in using a number

#Sig digits = Certain digits + 1 Estimated digit

0 5 10 15 20

7.8 12.1

Zeros – When are they significant?
(Depends on where they are)

– Preceding zeros:
• 0.00378 3 Significant Digits
• 0.0004016 4 Significant Digits

– Following zeros: We use scientific Notation
• 56,000 56.0 x 103 3 Significant Digits

Accuracy & Precision
(characterizes error associated with both calculations and measurements)

– Accuracy: How close is the computed or measured value to the truth?
– Valid: supported by objective truth.

– Precision: How closely do the individually computed or measured values agree with
one another?

– Reliable: Produces the same result on successive trials.

* Numerical Methods should be accurate & precise enough to meet the needs
of the engineering design problem.

5

Errors in Numerical Methods

1. Truncation Errors – Results from an approximation of an exact
mathematical procedure.

Example: Only using a finite number of terms in an infinite series
expansion – Binomial Expansion

2. Round-Off Errors – Results from having numbers with limited
significant figures represent exact numbers.

For Both Types of Errors:
True Value = Approximation + Error

() HOTxxxx +
−−

+
−

++=+ 32

!3
)2)(1(

!2
)1(11 ααααααα

1
,0

<

≠

x
realα

Error Definitions
True Error = True Value – Approximation

Normalized True Error – Relative Error (εt)

Approximate Error – (Ea) We need to approximate the error when we
do not have the “true” value available.

Approximate Relative Error (εa)

How do we find Ea ?
Example: Iterative Approach:

ATEt −=

%100×=
T
Et

tε

%100×=
A

Ea
aε

True Percent Error

%1001 ×
−

= −

i

ii
a A

AAε

Magnitude of Error

Generally, we will compute until the absolute value of the relative
error reaches some specified value,

How do we determine εs ? To obtain a result that is accurate to at
least N significant Figures we can use the following formula:

sa εε <

()N
s

−×= 2105.0ε

6

Round Off Errors
Computers retain only a fixed number of significant

figures during a calculation
Π = 3.14159265...

e = 2.7183…
Computers use base-2 representation & can not

precisely represent all base-10 numbers

• Word – “fundamental unit of information storage”
– Consist on binary digits or bits
– Numbers are stored in 1 or more words

• Base 10 system – 0,1,2,3,4,5,6,7,8,9
– Example 123,431 –

(1x105)+(2x104)+(3x103)+(4x102)+(3x101)+(1x100)

• Binary/base 2 system – 0,1
– Example 1101 – (1x23)+(1x22)+(0x21)+(1x20) = 13

Integer Representation

Signed binary numbers or signed magnitude method:
S = 1 if negative
S = 0 if positive

S
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Range of integers for 16-bit example:
215-1 to -215

Integer Representation – 5 bit
example

1 1 0 0 1
4 3 2 1 0

() () () ()[]0123 212020211 ×+×+×+×−=

9−=

7

Real or Floating-Point Representation:
Contains a Fractional and Integer part

ebmN ⋅=

Mantissa
Fractional part exponent

Base of number system (10)

7 6 5 4 3 2 1 0

Sign of
number mantissaexponent

Sign of exp

Floating-Point Representation Example

...037037037.027
1 =

0100370.0 ×

1103703.0 −×

Using 4 digits could be stored as:

Normalize

Normalizing limits the range of mantissa to:

11
<≤ m

b

Floating-Point
• Allows us to handle very large and small numbers

but …

DISADVANTAGES:
1. More storage is required than for integers
2. Longer processing time
3. Round-off error is introduced since the mantissa holds a

finite number of digits.

8

Round-Off Error Characteristics

1. Limit to the size (Large & Small) that can be Represented
(10-38 < x < 1038)

2. There are finite number of quantities that can be represented
within a range. As a result:

• Precision is limited
• Irrational Numbers are not exact
• Rational #s may not be represented by one of the

possible values in the set available on the computer

Quantized Errors – The result of chopping or Rounding
Ex: Π = 3.14159265... If we only have 8 digits:

3.1415926 Chopping
3.1415927 Rounding

Rounding
Reduces error

Round-Off Error Characteristics

3. Interval between numbers (Δx) increases as x increases.
Example: 4 digit mantissa

0.4356 x 104 Δx = 1
0.4356 x 100 Δx = 0.0001

For Chopping:

mx
x

ε≤
Δ

εm is the “machine epsilon” – sets the bounds for the relative
Quantized error.

t
m b −= 1ε

Number base

Sig digits in mantissa

When & why would we be
Interested in εm ?

Extended Precision

Single Precision – For most engineering application o.k.
Typically, 7 significant base-10 digits for 24 bit mantissa

Range 10-39 to 10 –38

Double Precision - 15 to 16 base-10 digits Range 10-308 to
10–308

•Round-Off Error is mitigated
•Computational time increases

9

Arithmetic Manipulation Errors
• Simple operation R.O. Error
• Consider computer w/4 digit mantissa

1. Addition: Add 2.345 & 0.0123

1

1

101234.0
102345.0

−×+

×

1

1

1

10235734.0
10001234.0

102345.0

×

×+

×Modify smaller
exponent to match
larger

Chop

1102357.0 ×

Last 2 digits have been lost!

%014.0%100
35734.2

357.235734.2
=×

−
=tε

Arithmetic Manipulation Errors
• Simple operation R.O. Error
• Consider computer w/4 digit mantissa

2. Subtraction: What if we have 2 nearly equal numbers?
Subtract 12.33 from 12.34

2

2

2

100.0001
101233.0
101234.0

×

×−

× Normalize
1100.1000 −×

3 non-significant zeros added!

Subtractive cancellation:
One of the most troublesome
Round off errors.

Arithmetic Manipulation Errors
• Simple operation R.O. Error
• Consider computer w/4 digit mantissa

3. Multiplication: Exponents are added & Mantissas multiplied

() () 422 1009028176.0105924.0101524.0 ×=×⋅×

3100.9028176×

3100.9028×

Normalize

Chop

4. Division: Mantissas are divided and exponents subtracted.

10

Arithmetic Manipulation Errors
5. Large Numbers of Computations: Cumulative effect of many

small round-off errors.
See Example 3.6 in Text for a FORTRAN Example:

• Matlab uses double precision for all calculations

6. Adding Large and Small Numbers:

7. Smearing – Summation of Series
• Occurs whenever individual terms of a series are larger

the the total summation

1.0
20000
+

5

5

5

10200001.0
10000001.0

1020000.0

×

×+

×
Normalize Chop

5102000.0 ×
0.1 term is entirely lost!

....
!32

1
32

++++=
xxxe x

x >0 No problem
x <0 sign switching can occur

