LAB Announcements

Spotlight

Jae-Jin Kim

Jae-Jin Kim

Education: Undergraduate University: Seoul National University - Atmospheric Science
MS: Gwangju Institute of Science and Technology - Environmental Engineering
PhD: Gwangju Institute of Science and Technology - Environmental Engineering

Program: Visiting Professor 2012-2014

Research Interests: Urban Atmospheric Environment

Publications:
(1) Kim, J.-J., and J.-J. Baik, 1999: A numerical study of thermal effects on flow and pollutant dispersion in urban street canyons. Journal of Applied Meteorology, 38, 1249-1261.
(2) Baik, J.-J., and J.-J. Kim, 1999: A numerical study of flow and pollutant dispersion characteristics in urban street canyons. Journal of Applied Meteorology, 38, 1576-1589.
(3) Baik, J.-J., R.-S. Park, H.-Y. Chun, and J.-J. Kim, 2000: A laboratory model of urban street-canyon flows. Journal of Applied Meteorology, 39, 1592-1600.
(4) Kim, J.-J., and J.-J. Baik, 2001: Urban street-canyon flows with bottom heating. Atmospheric Environment, 35, 3395-3404.
(5) Kim, J.-J., J.-J. Baik, and H.-Y. Chun, 2001: Two-dimensional numerical modeling of flow and dispersion in the presence of hill and buildings. Journal of Wind Engineering and Industrial Aerodynamics, 89, 947-966.
(6) Baik, J.-J., and J.-J. Kim, 2002: On the escape of pollutants from urban street canyons. Atmospheric Environment, 36, 527-536.
(7) Kim, J.-J., and J.-J. Baik, 2003: Effects of inflow turbulence intensity on flow and pollutant dispersion in an urban street canyon. Journal of Wind Engineering and Industrial Aerodynamics, 91, 309-329.
(8) Baik, J.-J., J.-J. Kim, and H. J. S. Fernando, 2003: A CFD model for simulating urban flow and dispersion. Journal of Applied Meteorology, 42, 1636-1648.
(9) Kim, S.-O., J.-J. Kim, S.-T. Yun, and K.-W. Kim, 2003: Numerical and experimental studies on cadmium (II) transport in kaolinte clay under electrical fields. Water, Air, and Soil Pollution, 150, 135-162.
(10) Kim, J.-J., and J.-J. Baik, 2004: A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k-? turbulence model. Atmospheric Environment, 38, 3039-3048.
(11) Kim, S.-O., J.-J. Kim, K.-W. Kim, and S.-T. Yun, 2004: Models and experiments on electrokinetic removal of Pb(II) from kaolinite clay. Separation Science and Technology, 39, 1927-1951.
(12) Kim, J.-J., and J.-J. Baik, 2005: Physical Experiments to Investigate Urban Street-Canyon Flow. Advances in Atmospheric Science, 22, 230-237.
(13) Baik, J.-J., R.-S. Park, and J.-J. Kim, 2005: Dependency of the horizontal length of cavity region on Reynolds number and ridge asymmetry. Journal of the Korean Meteorological Society, 41, 473-479.
(14) Kim, J.-J., and J.-J. Baik, 2005: An investigation of flow and scalar dispersion in an urban area using a CFD model. Journal of the Korean Meteorological Society, 41, 821-837.
(15) Kim, J.-J., and J.-J. Baik, 2005: Classification of flow regimes in urban street canyons using a CFD model. Journal of Korean Society for Atmospheric Environment, 21, 525-535.
(16) Kim, J.-J., H.-J. Song, and J.-J. Baik, 2006: Modeling flow and scalar dispersion around Cheomseongdae. Wind and Structures, 9(4), 315-330.
(17) Baik, J.-J., Y.-S. Kang, and J.-J. Kim, 2007: Modeling reactive pollutant dispersion in an urban street canyon. Atmospheric Environment, 41(5), 934-949.
(18) Baik, J.-J., Y.-H. Kim, J.-J. Kim, and J.-Y. Han, 2007: Effects of Boundary-Layer Stability on Urban Heat Island Induced Circulation. Theoretical and Applied Climatology, 89(1-2), 73-81.
(19) Han, J.-Y., J.-J. Kim, and J.-J. Baik, 2007: Flow regimes of continuously stratified flow over a double mountain. Atmosphere, 17(3), 231-240.
(20) Song, C.-K. J.-J. Kim, and D.-W. Song, 2007: The effects of windbreaks on reduction of suspended particles. Atmosphere, 17(4), 315-326.
(21) Kim, J.-J., 2007: The effects of obstacle aspect ratio on surrounding flows. Atmosphere, 17(4), 381-391.
(22) Kang, Y.-S., J.-J. Baik, and J.-J. Kim, 2008: Further studies of flow and reactive pollutant dispersion in a street canyon with bottom heating. Atmospheric Environment, 42(20), 4964-4975.
(23) Kim, D.-Y., J.-J. Kim, J.-H. Oh, and P. Sen, 2008: A case study on emission management for reducing photochemical pollution over the Osaka Bay area. Asia-Pacific Journal of Atmospheric Sciences, 44(4), 341-349.
(24) Kim, J.-J., and D.-Y. Kim, 2009: Effects of a building's density on flow in urban areas. Advances in Atmospheric Science, 26(1), 45-56.
(25) Baik, J.-J., S.-B. Park, and J.-J. Kim, 2009: Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model. Journal of Applied Meteorology and Climatology, 48(8), 1667-1681. DOI: 10.1175/2009JAMC2066.1
(26) Lee, T.-Y., D.-Y. Kim, J.-J. Kim, J.-K. Lee, 2009: Physicoshemical characteristics and estimation of H2S emission rate from municipal solid waste at the environmental facilities in Busan city. Korea Geo-Environmental Society. 10(2), 13-20.
(27) Lee, J.-H., J.-W. Choi, J.-J. Kim, Y.-C. Suh, 2009: The effects of an urban renewal plan on detailed air flows in an urban area. The Korean Association of Geographic Information Studies. 12(2), 69-81.
(28) Kim, J.-J., and J.-J. Baik, 2010: Effects of street-bottom and building-roof heating on flow in three-dimensional street canyons. Advances in Atmospheric Science, 27(3), 513-527, DOI: 10.1007/s00376-009-9095-2.
(29) Choi, J.-W., Y.-S. Lee, J.-J. Kim, 2010: Effects of meteorological and reclaiming conditions on the reduction of suspended particles. Journal of the Environmental Sciences. 19(11), 1423-1436.
(30) Cheong, H.-B., I.-H. Kwon, H.-G. Kang, J.-R. Park, H.-J. Han, and J.-J. Kim, 2011: Tropical cyclone track and intensity prediction with a structure adjustable balanced vortex. Asia-Pacific Journal of Atmospheric Sciences, 47(3), 293-303.
(31) Woo, J.-H., H.-S. Kim, S.-B. Lim, J.-J. Kim, J. Lee, R. Ryoo, H. Kim, and L. D. Minh, 2011: Constructing u-City of Seoul by future foresight analysis. Concurrency and Computation: Practice and Experience, 23(10), 1114-1126.
(32) Y.-S. Lee, J.-J. Kim, 2011: Effects of an apartment complex on flow and dispersion in an urban area. Atmosphere. 21(1), 95-108.
(33) Kim, M., R. Park, and J.-J. Kim, 2012: Urban air quality modeling with full O3-NOx-VOC chemistry: Implications for O3 and PM air quality in a street canyon. Atmospheric Environment, 47, 330-343.
(34) Yeom, J.-M., K.-S. Han, and J.-J. Kim, 2012: Evaluation on penetration rate of cloud for incoming solar radiation using geostationary satellite data. Asia-Pacific Journal of Atmospheric Sciences, 48(2), 115-123.
(35) Kim, D.-Y., J.-Y. Kim, and J.-J. Kim, 2012: A regression-based statistical correction of mesoscale simulations for near-surface wind speed using remotely sensed surface observations. Asia-Pacific Journal of Atmospheric Sciences, 48(4), 449-456.
(36) Choi, H.-W., D.-Y. Kim, J.-J. Kim, K.-Y. Kim, J.-H. Woo, 2012: Study on Dispersion Characteristics for Fire Scenarios in an Urban Area Using a CFD-WRF Coupled Model. Atmosphere., 22(1), 47-55.
(37) Kim, D.-Y., J.-Y. Kim, and J.-J. Kim, 2013: Mesoscale simulations of multi-decadal variability in the wind resource over the republic of Korea. Asia-Pacific Journal of Atmospheric Sciences, in press.
(38) Park, S.-J., D.-Y. Kim, and J.-J. Kim, 2013: Effects of Atmospheric Stability and Surface Temperature on Microscale Local Airflow. Atmosphere, in press.

Contact: jjkim@pknu.ac.kr

Website: http://urban.pknu.ac.kr

Observational and Theoretical Investigations Related to Hydrometeors Settling in Turbulent Air

Red Butte Canyon, UT Video demonstration of the measurement of SWE using the Differential Emissivity Disdrometer (DEID) and imaging for falling snowflakes using an SLR camera and laser for particle tracking velocimetry.

Supported by the National Science Foundation - AGS 1841870

Investigators, Senior Personnel, and Collaborators:
Tim Garrett (University of Utah, Principal Investigator)
Eric Pardyjak (Utah, Co-Principal Investigator)

Postdoctoral Researchers:
Dhiraj Kumar Singh (Mech Eng)
Students:
Spencer Donovan (MS)
Karlie Rees (MS now PhD Atmos Sci)
Ryan Szczerbinski (PhD Atmos Sci)
Trent Meisenheimer (MS Mech Eng)

Numerical weather and climate models are sensitive to descriptions of how fast frozen precipitation falls. Many models still use calculations that are rooted in measurements taken nearly 50 years ago. This award will provide up-to-date information on precipitation fall speed, including the impact of turbulence. The work will be accomplished using a new instrument called the Airborne Particle Imager which is designed to measure 3D velocity and take high resolution photography of the individual particles. The main broader societal impact of the award will be the confirmation or improvement upon the assumptions made by numerical models, which will potentially lead to improved weather forecasts. The lead researcher has provided significant public outreach through snowflake imagery, and the new instrument should improve upon those images. The instrument also has potential interdisciplinary and technology transfer uses. In addition, the award will provide education and training opportunities, including support for a female military veteran.

The research team plans an observational and theoretical project to improve understanding of how the turbulent atmosphere affects the fall speed of precipitation. A central aspect of the project will be the development of the Airborne Particle Imager (AIP) which is an update to the current Multi-Angle Snowflake Camera (MASC). The AIP will minimize ambient flow disturbance and add 3D velocity measurements to the MASC's existing capabilities. The AIP will be deployed during the 2019-2020 winter in the Complex Hydrometeor Aerial Locomotion and Image Capture Experiment (CHALICE) with other instruments to relate particle type, orientation, and motions to the degree of ambient turbulence. The observations will be compared to numerical models and past studies to explore the hypothesis that particle settling speed is slowed in low turbulence and accelerated in high turbulence situations, with increased deviation of particle orientation from the horizontal.